Spaces:
Running
Running
File size: 3,941 Bytes
3e9df0c 6ec98d8 3e9df0c c86bde4 6ec98d8 c55986d 6ec98d8 c86bde4 6ec98d8 c86bde4 c55986d 6ec98d8 b9c32e6 6ec98d8 c86bde4 6ec98d8 c86bde4 b9c32e6 6ec98d8 b9c32e6 fe51ca1 6ec98d8 c86bde4 6ec98d8 c86bde4 b9c32e6 6ec98d8 b9c32e6 c86bde4 b9c32e6 6ec98d8 b9c32e6 c86bde4 6ec98d8 c86bde4 6ec98d8 b9c32e6 c86bde4 6ec98d8 fe51ca1 b9c32e6 c1dbba4 fe51ca1 c1dbba4 fe51ca1 c1dbba4 fe51ca1 c1dbba4 fe51ca1 c1dbba4 f52a14b 5847e9e c62d4d9 b9c32e6 c86bde4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
import gradio as gr
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
import torch
import numpy as np
from PIL import Image
import open3d as o3d
from pathlib import Path
# Load model and feature extractor
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
def process_image(image_path):
image_path = Path(image_path) if isinstance(image_path, str) else image_path
try:
image_raw = Image.open(image_path).convert("RGB")
except Exception as e:
return f"Error loading image: {e}"
# Resize while maintaining aspect ratio
image = image_raw.resize(
(800, int(800 * image_raw.size[1] / image_raw.size[0])),
Image.Resampling.LANCZOS
)
encoding = feature_extractor(image, return_tensors="pt")
with torch.no_grad():
outputs = model(**encoding)
predicted_depth = outputs.predicted_depth
# Normalize depth image
prediction = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1),
size=image.size[::-1],
mode="bicubic",
align_corners=False,
).squeeze()
output = prediction.cpu().numpy()
if np.max(output) > 0:
depth_image = (output * 255 / np.max(output)).astype('uint8')
else:
depth_image = np.zeros_like(output, dtype='uint8') # Handle empty output
try:
gltf_path = create_3d_obj(np.array(image), depth_image, image_path)
except Exception:
gltf_path = create_3d_obj(np.array(image), depth_image, image_path, depth=8)
return Image.fromarray(depth_image), gltf_path, gltf_path
def create_3d_obj(rgb_image, depth_image, image_path, depth=10):
depth_o3d = o3d.geometry.Image(depth_image)
image_o3d = o3d.geometry.Image(rgb_image)
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
image_o3d, depth_o3d, convert_rgb_to_intensity=False)
w, h = depth_image.shape[1], depth_image.shape[0]
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
camera_intrinsic.set_intrinsics(w, h, 500, 500, w / 2, h / 2)
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, camera_intrinsic)
pcd.estimate_normals(
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30))
pcd.orient_normals_towards_camera_location(camera_location=np.array([0., 0., 1000.]))
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug):
mesh_raw, _ = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
pcd, depth=depth, width=0, scale=1.1, linear_fit=True)
voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / 256
mesh = mesh_raw.simplify_vertex_clustering(voxel_size=voxel_size)
bbox = pcd.get_axis_aligned_bounding_box()
mesh_crop = mesh.crop(bbox)
gltf_path = f'./{image_path.stem}.gltf'
o3d.io.write_triangle_mesh(gltf_path, mesh_crop, write_triangle_uvs=True)
return gltf_path
title = "Zero-shot Depth Estimation with DPT + 3D Model Preview"
description = "Upload an image to generate a depth map and reconstruct a 3D model in .gltf format."
with gr.Blocks() as demo:
gr.Markdown(f"## {title}")
gr.Markdown(description)
with gr.Row():
with gr.Column():
image_input = gr.Image(type="filepath", label="Upload Image")
generate_button = gr.Button("Generate 3D Model")
with gr.Column():
depth_output = gr.Image(label="Predicted Depth", type="pil")
with gr.Row():
model_output = gr.Model3D(label="3D Model Preview (GLTF)")
with gr.Row():
file_output = gr.File(label="Download 3D GLTF File")
generate_button.click(fn=process_image, inputs=[image_input], outputs=[depth_output, model_output, file_output])
if __name__ == "__main__":
demo.launch()
|