Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,95 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
|
|
|
|
|
|
60 |
)
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
demo.launch()
|
|
|
1 |
+
import openai
|
2 |
import gradio as gr
|
3 |
+
import requests
|
4 |
+
from bs4 import BeautifulSoup
|
5 |
|
6 |
+
# Initialize OpenAI with your API key
|
7 |
+
openai.api_key = "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"
|
|
|
|
|
8 |
|
9 |
+
# Function to fetch and crawl website content
|
10 |
+
def fetch_website_content(url):
|
11 |
+
try:
|
12 |
+
# Send a GET request to the website
|
13 |
+
response = requests.get(url)
|
14 |
+
if response.status_code != 200:
|
15 |
+
return "Error: Could not fetch the webpage. Please check the URL."
|
16 |
+
|
17 |
+
# Parse the website content with BeautifulSoup
|
18 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
19 |
+
|
20 |
+
# Extract text content from paragraph tags
|
21 |
+
website_text = " ".join([p.text for p in soup.find_all('p')])
|
22 |
+
return website_text
|
23 |
+
|
24 |
+
except Exception as e:
|
25 |
+
return f"Error: {str(e)}"
|
26 |
|
27 |
+
# Function to split content into chunks that fit within the token limits
|
28 |
+
def split_content_into_chunks(content, max_chunk_size=3000):
|
29 |
+
# Split the content into chunks based on token limits
|
30 |
+
words = content.split()
|
31 |
+
chunks = []
|
32 |
+
|
33 |
+
while words:
|
34 |
+
chunk = words[:max_chunk_size]
|
35 |
+
chunks.append(" ".join(chunk))
|
36 |
+
words = words[max_chunk_size:]
|
37 |
+
|
38 |
+
return chunks
|
39 |
|
40 |
+
# Function to query GPT model with website content
|
41 |
+
def ask_question(url, question):
|
42 |
+
# Fetch website content
|
43 |
+
website_text = fetch_website_content(url)
|
44 |
+
|
45 |
+
if "Error" in website_text:
|
46 |
+
return website_text
|
47 |
+
|
48 |
+
# Split content into manageable chunks based on OpenAI's token limit
|
49 |
+
chunks = split_content_into_chunks(website_text)
|
50 |
+
|
51 |
+
# Initialize a variable to hold the entire response
|
52 |
+
full_answer = ""
|
53 |
+
|
54 |
+
# Query GPT model for each chunk
|
55 |
+
for chunk in chunks:
|
56 |
+
# Prepare the prompt for GPT
|
57 |
+
messages = [
|
58 |
+
{"role": "system", "content": "You are a helpful assistant who answers questions based on the following website content."},
|
59 |
+
{"role": "user", "content": f"Website content: {chunk}\n\nQuestion: {question}"}
|
60 |
+
]
|
61 |
+
|
62 |
+
# Use GPT-3.5-turbo model to generate an answer
|
63 |
+
try:
|
64 |
+
response = openai.ChatCompletion.create(
|
65 |
+
model="gpt-3.5-turbo", # Use gpt-4 if you have access to it
|
66 |
+
messages=messages,
|
67 |
+
max_tokens=3000, # Increase max_tokens to the highest possible value
|
68 |
+
temperature=0.5,
|
69 |
+
)
|
70 |
+
answer = response.choices[0].message['content'].strip()
|
71 |
+
full_answer += answer + "\n\n" # Append chunked responses together
|
72 |
+
|
73 |
+
except Exception as e:
|
74 |
+
return f"Error: {str(e)}"
|
75 |
+
|
76 |
+
return full_answer
|
77 |
|
78 |
+
# Gradio interface for chatbot
|
79 |
+
def chatbot(url, question):
|
80 |
+
return ask_question(url, question)
|
81 |
|
82 |
+
# Define Gradio interface using new syntax
|
83 |
+
iface = gr.Interface(
|
84 |
+
fn=chatbot,
|
85 |
+
inputs=[
|
86 |
+
gr.Textbox(label="Website URL", placeholder="Enter website URL here..."),
|
87 |
+
gr.Textbox(label="Your Question", placeholder="Ask a question to understand what is in the website or generate article based on the website information...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
],
|
89 |
+
outputs=gr.Textbox(),
|
90 |
+
title="Contentigo - Lite",
|
91 |
+
description="Ask questions about the content of any website. Also, generate articles based on the website content."
|
92 |
)
|
93 |
|
94 |
+
# Launch the Gradio interface
|
95 |
+
iface.launch()
|
|