sujith13082003 commited on
Commit
3124002
Β·
verified Β·
1 Parent(s): f4e6c17

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +36 -20
README.md CHANGED
@@ -1,8 +1,27 @@
1
- Emotion Detection from Text using BERT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- Welcome to the Emotion Detection Web App. This application uses a fine-tuned BERT model to detect human emotions from short pieces of text.
4
 
5
- #Description
6
 
7
  This project leverages the `nateraw/bert-base-uncased-emotion` model from Hugging Face Transformers to classify input text into one of six emotions:
8
 
@@ -14,41 +33,39 @@ This project leverages the `nateraw/bert-base-uncased-emotion` model from Huggin
14
  - 😲 Surprise
15
 
16
  It uses:
17
- -Hugging Face Transformers** for model and tokenizer
18
- -PyTorch for deep learning inference
19
- -Gradio to build an interactive web interface
20
-
21
- Model Used
22
 
23
- Model Name: `nateraw/bert-base-uncased-emotion`
24
- Base Architecture: BERT (uncased)
25
- Dataset: GoEmotions subset
26
-
27
- How It Works
28
 
29
- 1. You type a sentence like:
30
- > "I just got a new job!"
31
 
32
- 2. The model analyzes the text and returns the predicted emotion with confidence score.
 
 
33
 
 
34
 
35
- Dependencies
36
 
37
  Dependencies are defined in `requirements.txt`:
38
  - `transformers`
39
  - `torch`
40
  - `gradio`
41
 
 
42
 
43
- Use Cases
44
 
45
  - Social media sentiment analysis
46
  - Customer feedback classification
47
  - Chatbot emotion understanding
48
  - Mental health applications
49
 
 
50
 
51
- **Author
52
 
53
  - **Sujith Kumar**
54
  - Hugging Face: [@sujith13082003](https://huggingface.co/sujith13082003)
@@ -58,4 +75,3 @@ Dependencies are defined in `requirements.txt`:
58
  ## πŸ“ License
59
 
60
  This project is for educational and research purposes. Refer to individual library licenses for commercial use.
61
-
 
1
+ ---
2
+ title: Emotion Detection App
3
+ emoji: 😊
4
+ colorFrom: indigo
5
+ colorTo: pink
6
+ sdk: gradio
7
+ sdk_version: "4.27.0"
8
+ app_file: app.py
9
+ pinned: false
10
+ ---
11
+
12
+ # 😊 Emotion Detection from Text using BERT
13
+
14
+ Welcome to the **Emotion Detection Web App**! This application uses a fine-tuned BERT model to detect human emotions from short pieces of text.
15
+
16
+ ---
17
+
18
+ ## πŸš€ Demo
19
+
20
+ πŸ‘‰ Try the live app: [Click here to open the web app](https://huggingface.co/spaces/sujith13082003/emotion_detection)
21
 
22
+ ---
23
 
24
+ ## πŸ” Description
25
 
26
  This project leverages the `nateraw/bert-base-uncased-emotion` model from Hugging Face Transformers to classify input text into one of six emotions:
27
 
 
33
  - 😲 Surprise
34
 
35
  It uses:
36
+ - **Hugging Face Transformers** for model and tokenizer
37
+ - **PyTorch** for deep learning inference
38
+ - **Gradio** to build an interactive web interface
 
 
39
 
40
+ ---
 
 
 
 
41
 
42
+ ## 🧠 Model Used
 
43
 
44
+ - **Model Name**: `nateraw/bert-base-uncased-emotion`
45
+ - **Base Architecture**: BERT (uncased)
46
+ - **Dataset**: GoEmotions subset
47
 
48
+ ---
49
 
50
+ ## πŸ“¦ Dependencies
51
 
52
  Dependencies are defined in `requirements.txt`:
53
  - `transformers`
54
  - `torch`
55
  - `gradio`
56
 
57
+ ---
58
 
59
+ ## πŸ“ˆ Use Cases
60
 
61
  - Social media sentiment analysis
62
  - Customer feedback classification
63
  - Chatbot emotion understanding
64
  - Mental health applications
65
 
66
+ ---
67
 
68
+ ## πŸ‘¨β€πŸ’» Author
69
 
70
  - **Sujith Kumar**
71
  - Hugging Face: [@sujith13082003](https://huggingface.co/sujith13082003)
 
75
  ## πŸ“ License
76
 
77
  This project is for educational and research purposes. Refer to individual library licenses for commercial use.