sujith13082003 commited on
Commit
70ddccd
·
verified ·
1 Parent(s): 6d5478f

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -0
app.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
2
+ import torch
3
+ import gradio as gr
4
+
5
+ # Load model and tokenizer
6
+ model_name = "nateraw/bert-base-uncased-emotion"
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
9
+
10
+ # Emotion labels
11
+ labels = ['sadness', 'joy', 'love', 'anger', 'fear', 'surprise']
12
+
13
+ # Prediction function
14
+ def predict_emotion(text):
15
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
16
+ with torch.no_grad():
17
+ outputs = model(**inputs)
18
+ probs = torch.nn.functional.softmax(outputs.logits, dim=1)
19
+ pred_class = torch.argmax(probs).item()
20
+ emotion = labels[pred_class]
21
+ return f"{emotion} ({probs[0][pred_class].item()*100:.2f}% confidence)"
22
+
23
+ # Gradio Interface
24
+ interface = gr.Interface(
25
+ fn=predict_emotion,
26
+ inputs=gr.Textbox(lines=2, placeholder="Type something here..."),
27
+ outputs="text",
28
+ title="BERT-based Emotion Detection",
29
+ description="A web app that uses a fine-tuned BERT model to detect emotions from text."
30
+ )
31
+
32
+ interface.launch()