from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import gradio as gr # Load model and tokenizer model_name = "nateraw/bert-base-uncased-emotion" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) # Emotion labels labels = ['sadness', 'joy', 'love', 'anger', 'fear', 'surprise'] # Prediction function def predict_emotion(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): outputs = model(**inputs) probs = torch.nn.functional.softmax(outputs.logits, dim=1) pred_class = torch.argmax(probs).item() emotion = labels[pred_class] return f"{emotion} ({probs[0][pred_class].item()*100:.2f}% confidence)" # Gradio Interface interface = gr.Interface( fn=predict_emotion, inputs=gr.Textbox(lines=2, placeholder="Type something here..."), outputs="text", title="BERT-based Emotion Detection", description="A web app that uses a fine-tuned BERT model to detect emotions from text." ) interface.launch()