Spaces:
Sleeping
Sleeping
File size: 11,601 Bytes
76552c4 64794fb 76552c4 64794fb 76552c4 64794fb 76552c4 64794fb 76552c4 64794fb 76552c4 64794fb 76552c4 64794fb 76552c4 64794fb 76552c4 64794fb 76552c4 64794fb 76552c4 64794fb 76552c4 64794fb 76552c4 64794fb 76552c4 64794fb 76552c4 64794fb 76552c4 64794fb 76552c4 64794fb 76552c4 64794fb 76552c4 64794fb 76552c4 64794fb 76552c4 64794fb 76552c4 64794fb 76552c4 64794fb 76552c4 64794fb 76552c4 64794fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import streamlit as st
import torch
import numpy as np
import faiss
import time
import re
from typing import List, Tuple
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from sentence_transformers import SentenceTransformer
import fitz # PyMuPDF
import docx2txt
from langchain_text_splitters import RecursiveCharacterTextSplitter
from io import BytesIO
# ------------------------
# Configuration
# ------------------------
MODEL_NAME = "ibm-granite/granite-3.1-1b-a400m-instruct"
EMBED_MODEL = "sentence-transformers/all-mpnet-base-v2"
CHUNK_SIZE = 1024 # Increased for better context
CHUNK_OVERLAP = 128
MAX_FILE_SIZE_MB = 10
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# ------------------------
# Model Loading with Quantization
# ------------------------
@st.cache_resource
def load_models():
try:
# Configure quantization for CPU deployment
quant_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
) if DEVICE == "cpu" else None
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
revision="main"
)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
revision="main",
device_map="auto",
quantization_config=quant_config,
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
low_cpu_mem_usage=True
).eval()
# Load embedding model with FP16 optimization
embedder = SentenceTransformer(
EMBED_MODEL,
device=DEVICE,
device_kwargs={"keep_all_models": True}
)
if DEVICE == "cuda":
embedder = embedder.half()
return tokenizer, model, embedder
except Exception as e:
st.error(f"Model loading failed: {str(e)}")
st.stop()
# ------------------------
# Enhanced Text Processing
# ------------------------
def clean_text(text: str) -> str:
"""Advanced text cleaning with multiple normalization steps"""
text = re.sub(r'\s+', ' ', text) # Remove extra whitespace
text = re.sub(r'[^\x00-\x7F]+', ' ', text) # Remove non-ASCII
text = re.sub(r'\bPage \d+\b', '', text) # Remove page numbers
text = re.sub(r'http\S+', '', text) # Remove URLs
text = re.sub(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', '', text) # Remove emails
return text.strip()
def extract_text(file: BytesIO) -> Tuple[str, List[str]]:
"""Improved text extraction with format-specific handling"""
try:
if file.size > MAX_FILE_SIZE_MB * 1024 * 1024:
raise ValueError(f"File size exceeds {MAX_FILE_SIZE_MB}MB limit")
file_type = file.type
text = ""
if file_type == "application/pdf":
doc = fitz.open(stream=file.read(), filetype="pdf")
text = "\n".join([page.get_text("text", flags=fitz.TEXT_PRESERVE_WHITESPACE) for page in doc])
# Extract images metadata for future multimodal expansion
images = [img for page in doc for img in page.get_images()]
if images:
st.session_state.images = images
elif file_type == "text/plain":
text = file.read().decode("utf-8", errors="replace")
elif file_type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
text = docx2txt.process(file)
else:
raise ValueError("Unsupported file type")
return clean_text(text)
except Exception as e:
st.error(f"Text extraction failed: {str(e)}")
st.stop()
def semantic_chunking(text: str) -> List[str]:
"""Context-aware text splitting with metadata tracking"""
splitter = RecursiveCharacterTextSplitter(
chunk_size=CHUNK_SIZE,
chunk_overlap=CHUNK_OVERLAP,
length_function=len,
add_start_index=True
)
chunks = splitter.split_text(text)
return chunks
# ------------------------
# Enhanced Vector Indexing
# ------------------------
def build_faiss_index(chunks: List[str], embedder) -> faiss.Index:
"""Build optimized FAISS index with error handling"""
try:
embeddings = embedder.encode(
chunks,
batch_size=32,
show_progress_bar=True,
convert_to_tensor=True
)
if DEVICE == "cuda":
embeddings = embeddings.cpu().numpy()
else:
embeddings = embeddings.numpy()
dimension = embeddings.shape[1]
index = faiss.IndexFlatIP(dimension)
faiss.normalize_L2(embeddings)
index.add(embeddings)
return index
except Exception as e:
st.error(f"Index creation failed: {str(e)}")
st.stop()
# ------------------------
# Improved Generation Functions
# ------------------------
def format_prompt(system_prompt: str, user_input: str) -> str:
"""Structured prompt formatting for better model performance"""
return f"""<|system|>
{system_prompt}
<|user|>
{user_input}
<|assistant|>
"""
def generate_summary(text: str, tokenizer, model) -> str:
"""Hierarchical summarization with chunk processing"""
try:
# First-stage summary
chunks = [text[i:i+3000] for i in range(0, len(text), 3000)]
summaries = []
for chunk in chunks:
prompt = format_prompt(
"Generate a detailed summary of this text excerpt:",
chunk[:2500]
)
inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE)
outputs = model.generate(
**inputs,
max_new_tokens=300,
temperature=0.3,
do_sample=True
)
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
summaries.append(summary.split("<|assistant|>")[-1].strip())
# Final synthesis
final_prompt = format_prompt(
"Synthesize these summaries into a comprehensive overview:",
"\n".join(summaries)
)
inputs = tokenizer(final_prompt, return_tensors="pt").to(DEVICE)
outputs = model.generate(
**inputs,
max_new_tokens=500,
temperature=0.4,
do_sample=True
)
return tokenizer.decode(outputs[0], skip_special_tokens=True).split("<|assistant|>")[-1].strip()
except Exception as e:
st.error(f"Summarization failed: {str(e)}")
return "Summary generation failed"
def retrieve_context(query: str, index, chunks: List[str], embedder, top_k: int = 3) -> str:
"""Enhanced retrieval with score thresholding"""
query_embed = embedder.encode([query], convert_to_tensor=True)
if DEVICE == "cuda":
query_embed = query_embed.cpu().numpy()
else:
query_embed = query_embed.numpy()
faiss.normalize_L2(query_embed)
scores, indices = index.search(query_embed, top_k*2) # Retrieve extra for filtering
# Apply similarity threshold
valid_indices = [i for i, score in zip(indices[0], scores[0]) if score > 0.35]
return " ".join([chunks[i] for i in valid_indices[:top_k]])
# ------------------------
# Streamlit UI Improvements
# ------------------------
def main():
st.set_page_config(
page_title="RAG Book Analyzer Pro",
layout="wide",
initial_sidebar_state="expanded"
)
# Initialize session state
if "processed" not in st.session_state:
st.session_state.processed = False
if "index" not in st.session_state:
st.session_state.index = None
# Load models once
tokenizer, model, embedder = load_models()
# Sidebar controls
with st.sidebar:
st.header("Settings")
top_k = st.slider("Number of context passages", 1, 5, 3)
temp = st.slider("Generation Temperature", 0.1, 1.0, 0.4)
# Main interface
st.title("π Advanced Book Analyzer")
st.write("Upload technical manuals, research papers, or books for deep analysis")
uploaded_file = st.file_uploader(
"Choose a document",
type=["pdf", "txt", "docx"],
accept_multiple_files=False
)
if uploaded_file and not st.session_state.processed:
with st.spinner("Analyzing document..."):
start_time = time.time()
# Process document
text = extract_text(uploaded_file)
chunks = semantic_chunking(text)
index = build_faiss_index(chunks, embedder)
# Store in session state
st.session_state.update({
"chunks": chunks,
"index": index,
"processed": True,
"text": text
})
st.success(f"Processed {len(chunks)} chunks in {time.time()-start_time:.1f}s")
if st.session_state.processed:
# Summary section
with st.expander("Document Summary", expanded=True):
summary = generate_summary(st.session_state.text, tokenizer, model)
st.markdown(summary)
# Q&A Section
st.divider()
col1, col2 = st.columns([3, 1])
with col1:
query = st.text_input("Ask about the document:", placeholder="What are the key findings...")
with col2:
show_context = st.checkbox("Show context sources")
if query:
with st.spinner("Searching document..."):
context = retrieve_context(
query,
st.session_state.index,
st.session_state.chunks,
embedder,
top_k=top_k
)
if not context:
st.warning("No relevant context found in document")
return
with st.expander("Generated Answer", expanded=True):
answer = generate_answer(query, context, tokenizer, model, temp)
st.markdown(answer)
if show_context:
st.divider()
st.subheader("Source Context")
st.write(context)
def generate_answer(query: str, context: str, tokenizer, model, temp: float) -> str:
"""Improved answer generation with context validation"""
try:
prompt = format_prompt(
f"""Answer the question using only the provided context.
Follow these rules:
1. Be precise and factual
2. If unsure, say 'The document does not specify'
3. Use bullet points when listing items
4. Keep answers under 3 sentences
Context: {context[:2000]}""",
query
)
inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE)
outputs = model.generate(
**inputs,
max_new_tokens=400,
temperature=temp,
top_p=0.9,
repetition_penalty=1.2,
do_sample=True
)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
return answer.split("<|assistant|>")[-1].strip()
except Exception as e:
st.error(f"Generation failed: {str(e)}")
return "Unable to generate answer"
if __name__ == "__main__":
main() |