File size: 6,887 Bytes
76552c4
3f00b29
ab46633
64794fb
76552c4
64794fb
66e139c
64794fb
3f00b29
 
64794fb
 
 
3f00b29
64794fb
3f00b29
 
ab46633
 
64794fb
3f00b29
76552c4
64794fb
3f00b29
64794fb
3f00b29
76552c4
64794fb
3f00b29
 
 
 
 
 
 
 
 
64794fb
 
 
3f00b29
 
 
b32efb7
3f00b29
 
ab46633
3f00b29
64794fb
 
 
 
76552c4
ab46633
 
64794fb
ab46633
64794fb
ab46633
64794fb
 
 
ab46633
64794fb
ab46633
64794fb
ab46633
3f00b29
 
ab46633
 
3f00b29
 
 
ab46633
3f00b29
 
ab46633
3f00b29
 
ab46633
 
 
b32efb7
ab46633
b32efb7
ab46633
 
64794fb
 
3f00b29
64794fb
ab46633
3f00b29
 
 
 
 
 
 
 
 
 
b32efb7
 
3f00b29
b32efb7
 
3f00b29
 
b32efb7
3f00b29
 
 
 
 
 
 
 
 
 
64794fb
ab46633
3f00b29
 
 
 
 
 
 
 
 
 
ab46633
 
3f00b29
 
 
 
 
 
 
 
 
 
 
ab46633
3f00b29
 
 
 
 
76552c4
64794fb
ab46633
64794fb
b32efb7
ab46633
3f00b29
ab46633
 
 
 
3f00b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab46633
 
 
 
3f00b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import streamlit as st
st.set_page_config(page_title="RAG Book Analyzer", layout="wide")

import torch
import numpy as np
import faiss
from transformers import AutoModelForCausalLM, AutoTokenizer
from sentence_transformers import SentenceTransformer
import fitz  # PyMuPDF
import docx2txt
from langchain_text_splitters import RecursiveCharacterTextSplitter

# ------------------------
# Configuration (optimized for reliability)
# ------------------------
MODEL_NAME = "microsoft/phi-2"
EMBED_MODEL = "sentence-transformers/all-MiniLM-L6-v2"  # Efficient embedding model
CHUNK_SIZE = 512
CHUNK_OVERLAP = 64
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
MAX_TEXT_LENGTH = 3000  # To prevent OOM errors

# ------------------------
# Model Loading with Robust Error Handling
# ------------------------
@st.cache_resource(show_spinner="Loading AI models...")
def load_models():
    try:
        # Load tokenizer with special settings for Phi-2
        tokenizer = AutoTokenizer.from_pretrained(
            MODEL_NAME,
            trust_remote_code=True,
            padding_side="left"
        )
        tokenizer.pad_token = tokenizer.eos_token
        
        # Load model with safe defaults
        model = AutoModelForCausalLM.from_pretrained(
            MODEL_NAME,
            torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
            trust_remote_code=True,
            device_map="auto" if DEVICE == "cuda" else None,
            low_cpu_mem_usage=True
        )
        
        # Load efficient embedding model
        embedder = SentenceTransformer(EMBED_MODEL, device=DEVICE)
        
        return tokenizer, model, embedder
    except Exception as e:
        st.error(f"Model loading failed: {str(e)}")
        st.stop()

tokenizer, model, embedder = load_models()

# ------------------------
# Text Processing Functions
# ------------------------
def split_text(text):
    splitter = RecursiveCharacterTextSplitter(
        chunk_size=CHUNK_SIZE,
        chunk_overlap=CHUNK_OVERLAP,
        length_function=len
    )
    return splitter.split_text(text)

def extract_text(file):
    try:
        if file.type == "application/pdf":
            doc = fitz.open(stream=file.read(), filetype="pdf")
            return "\n".join([page.get_text() for page in doc])
        elif file.type == "text/plain":
            return file.read().decode("utf-8")
        elif file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
            return docx2txt.process(file)
        else:
            st.error(f"Unsupported file type: {file.type}")
            return ""
    except Exception as e:
        st.error(f"Error processing file: {str(e)}")
        return ""

def build_index(chunks):
    embeddings = embedder.encode(chunks, show_progress_bar=False)
    dimension = embeddings.shape[1]
    index = faiss.IndexFlatL2(dimension)
    index.add(embeddings)
    return index

# ------------------------
# AI Generation Functions (with safeguards)
# ------------------------
def generate_summary(text):
    text = text[:MAX_TEXT_LENGTH]  # Prevent long inputs
    prompt = f"Instruction: Summarize this book in a concise paragraph\nText: {text}\nSummary:"
    
    inputs = tokenizer(
        prompt, 
        return_tensors="pt",
        max_length=1024,
        truncation=True
    ).to(DEVICE)
    
    outputs = model.generate(
        **inputs,
        max_new_tokens=200,
        temperature=0.7,
        top_p=0.9,
        do_sample=True,
        pad_token_id=tokenizer.eos_token_id
    )
    
    summary = tokenizer.decode(
        outputs[0], 
        skip_special_tokens=True
    )
    
    # Extract just the summary part
    if "Summary:" in summary:
        return summary.split("Summary:")[-1].strip()
    return summary.replace(prompt, "").strip()

def generate_answer(query, context):
    context = context[:MAX_TEXT_LENGTH]  # Limit context size
    prompt = f"Instruction: Answer this question based on the context. If unsure, say 'I don't know'.\nQuestion: {query}\nContext: {context}\nAnswer:"
    
    inputs = tokenizer(
        prompt, 
        return_tensors="pt",
        max_length=1024,
        truncation=True
    ).to(DEVICE)
    
    outputs = model.generate(
        **inputs,
        max_new_tokens=150,
        temperature=0.4,
        top_p=0.85,
        repetition_penalty=1.1,
        do_sample=True,
        pad_token_id=tokenizer.eos_token_id
    )
    
    answer = tokenizer.decode(
        outputs[0], 
        skip_special_tokens=True
    )
    
    # Extract just the answer part
    if "Answer:" in answer:
        return answer.split("Answer:")[-1].strip()
    return answer.replace(prompt, "").strip()

# ------------------------
# Streamlit UI
# ------------------------
st.title("πŸ“š RAG-Based Book Analyzer")
st.write("Upload a book (PDF, TXT, DOCX) to get a summary and ask questions about its content.")
st.warning("Note: First run will download models (~1.5GB). Please be patient!")

uploaded_file = st.file_uploader("Upload File", type=["pdf", "txt", "docx"])

if uploaded_file:
    with st.spinner("Extracting text from file..."):
        text = extract_text(uploaded_file)
    
    if not text:
        st.error("Failed to extract text. Please try another file.")
        st.stop()
    
    st.success(f"βœ… Extracted {len(text)} characters")
    
    with st.spinner("Generating summary (this may take a minute)..."):
        summary = generate_summary(text)
        st.markdown("### Book Summary")
        st.info(summary)
    
    with st.spinner("Preparing document for questions..."):
        chunks = split_text(text)
        index = build_index(chunks)
        st.session_state.chunks = chunks
        st.session_state.index = index
        st.success(f"βœ… Document indexed with {len(chunks)} chunks")

st.divider()

if 'chunks' in st.session_state:
    st.markdown("### ❓ Ask a Question about the Book")
    query = st.text_input("Enter your question:", key="question")
    
    if query:
        with st.spinner("Searching for answers..."):
            # Retrieve top 3 relevant chunks
            query_embedding = embedder.encode([query])
            distances, indices = st.session_state.index.search(query_embedding, k=3)
            
            # Safely retrieve chunks
            retrieved_chunks = []
            for i in indices[0]:
                if i < len(st.session_state.chunks):
                    retrieved_chunks.append(st.session_state.chunks[i])
            
            context = "\n\n".join(retrieved_chunks)
            
            # Generate answer
            answer = generate_answer(query, context)
            
            # Display results
            st.markdown("### πŸ’¬ Answer")
            st.success(answer)
            
            with st.expander("View context used for answer"):
                st.text(context)