Spaces:
Sleeping
Sleeping
File size: 6,887 Bytes
76552c4 3f00b29 ab46633 64794fb 76552c4 64794fb 66e139c 64794fb 3f00b29 64794fb 3f00b29 64794fb 3f00b29 ab46633 64794fb 3f00b29 76552c4 64794fb 3f00b29 64794fb 3f00b29 76552c4 64794fb 3f00b29 64794fb 3f00b29 b32efb7 3f00b29 ab46633 3f00b29 64794fb 76552c4 ab46633 64794fb ab46633 64794fb ab46633 64794fb ab46633 64794fb ab46633 64794fb ab46633 3f00b29 ab46633 3f00b29 ab46633 3f00b29 ab46633 3f00b29 ab46633 b32efb7 ab46633 b32efb7 ab46633 64794fb 3f00b29 64794fb ab46633 3f00b29 b32efb7 3f00b29 b32efb7 3f00b29 b32efb7 3f00b29 64794fb ab46633 3f00b29 ab46633 3f00b29 ab46633 3f00b29 76552c4 64794fb ab46633 64794fb b32efb7 ab46633 3f00b29 ab46633 3f00b29 ab46633 3f00b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import streamlit as st
st.set_page_config(page_title="RAG Book Analyzer", layout="wide")
import torch
import numpy as np
import faiss
from transformers import AutoModelForCausalLM, AutoTokenizer
from sentence_transformers import SentenceTransformer
import fitz # PyMuPDF
import docx2txt
from langchain_text_splitters import RecursiveCharacterTextSplitter
# ------------------------
# Configuration (optimized for reliability)
# ------------------------
MODEL_NAME = "microsoft/phi-2"
EMBED_MODEL = "sentence-transformers/all-MiniLM-L6-v2" # Efficient embedding model
CHUNK_SIZE = 512
CHUNK_OVERLAP = 64
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
MAX_TEXT_LENGTH = 3000 # To prevent OOM errors
# ------------------------
# Model Loading with Robust Error Handling
# ------------------------
@st.cache_resource(show_spinner="Loading AI models...")
def load_models():
try:
# Load tokenizer with special settings for Phi-2
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
padding_side="left"
)
tokenizer.pad_token = tokenizer.eos_token
# Load model with safe defaults
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
trust_remote_code=True,
device_map="auto" if DEVICE == "cuda" else None,
low_cpu_mem_usage=True
)
# Load efficient embedding model
embedder = SentenceTransformer(EMBED_MODEL, device=DEVICE)
return tokenizer, model, embedder
except Exception as e:
st.error(f"Model loading failed: {str(e)}")
st.stop()
tokenizer, model, embedder = load_models()
# ------------------------
# Text Processing Functions
# ------------------------
def split_text(text):
splitter = RecursiveCharacterTextSplitter(
chunk_size=CHUNK_SIZE,
chunk_overlap=CHUNK_OVERLAP,
length_function=len
)
return splitter.split_text(text)
def extract_text(file):
try:
if file.type == "application/pdf":
doc = fitz.open(stream=file.read(), filetype="pdf")
return "\n".join([page.get_text() for page in doc])
elif file.type == "text/plain":
return file.read().decode("utf-8")
elif file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
return docx2txt.process(file)
else:
st.error(f"Unsupported file type: {file.type}")
return ""
except Exception as e:
st.error(f"Error processing file: {str(e)}")
return ""
def build_index(chunks):
embeddings = embedder.encode(chunks, show_progress_bar=False)
dimension = embeddings.shape[1]
index = faiss.IndexFlatL2(dimension)
index.add(embeddings)
return index
# ------------------------
# AI Generation Functions (with safeguards)
# ------------------------
def generate_summary(text):
text = text[:MAX_TEXT_LENGTH] # Prevent long inputs
prompt = f"Instruction: Summarize this book in a concise paragraph\nText: {text}\nSummary:"
inputs = tokenizer(
prompt,
return_tensors="pt",
max_length=1024,
truncation=True
).to(DEVICE)
outputs = model.generate(
**inputs,
max_new_tokens=200,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
summary = tokenizer.decode(
outputs[0],
skip_special_tokens=True
)
# Extract just the summary part
if "Summary:" in summary:
return summary.split("Summary:")[-1].strip()
return summary.replace(prompt, "").strip()
def generate_answer(query, context):
context = context[:MAX_TEXT_LENGTH] # Limit context size
prompt = f"Instruction: Answer this question based on the context. If unsure, say 'I don't know'.\nQuestion: {query}\nContext: {context}\nAnswer:"
inputs = tokenizer(
prompt,
return_tensors="pt",
max_length=1024,
truncation=True
).to(DEVICE)
outputs = model.generate(
**inputs,
max_new_tokens=150,
temperature=0.4,
top_p=0.85,
repetition_penalty=1.1,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
answer = tokenizer.decode(
outputs[0],
skip_special_tokens=True
)
# Extract just the answer part
if "Answer:" in answer:
return answer.split("Answer:")[-1].strip()
return answer.replace(prompt, "").strip()
# ------------------------
# Streamlit UI
# ------------------------
st.title("π RAG-Based Book Analyzer")
st.write("Upload a book (PDF, TXT, DOCX) to get a summary and ask questions about its content.")
st.warning("Note: First run will download models (~1.5GB). Please be patient!")
uploaded_file = st.file_uploader("Upload File", type=["pdf", "txt", "docx"])
if uploaded_file:
with st.spinner("Extracting text from file..."):
text = extract_text(uploaded_file)
if not text:
st.error("Failed to extract text. Please try another file.")
st.stop()
st.success(f"β
Extracted {len(text)} characters")
with st.spinner("Generating summary (this may take a minute)..."):
summary = generate_summary(text)
st.markdown("### Book Summary")
st.info(summary)
with st.spinner("Preparing document for questions..."):
chunks = split_text(text)
index = build_index(chunks)
st.session_state.chunks = chunks
st.session_state.index = index
st.success(f"β
Document indexed with {len(chunks)} chunks")
st.divider()
if 'chunks' in st.session_state:
st.markdown("### β Ask a Question about the Book")
query = st.text_input("Enter your question:", key="question")
if query:
with st.spinner("Searching for answers..."):
# Retrieve top 3 relevant chunks
query_embedding = embedder.encode([query])
distances, indices = st.session_state.index.search(query_embedding, k=3)
# Safely retrieve chunks
retrieved_chunks = []
for i in indices[0]:
if i < len(st.session_state.chunks):
retrieved_chunks.append(st.session_state.chunks[i])
context = "\n\n".join(retrieved_chunks)
# Generate answer
answer = generate_answer(query, context)
# Display results
st.markdown("### π¬ Answer")
st.success(answer)
with st.expander("View context used for answer"):
st.text(context) |