File size: 3,551 Bytes
242da2d
 
 
 
bc20a41
a9d0ada
e33f38e
a9d0ada
e33f38e
 
a9d0ada
af08924
a9d0ada
 
529a636
a9d0ada
242da2d
a9d0ada
242da2d
 
529a636
242da2d
529a636
242da2d
529a636
 
242da2d
 
 
a9d0ada
 
242da2d
529a636
242da2d
af08924
a9d0ada
 
 
 
 
 
 
 
 
 
 
 
 
242da2d
af08924
242da2d
 
529a636
 
 
242da2d
 
529a636
a9d0ada
 
 
529a636
a9d0ada
 
 
 
 
 
242da2d
 
529a636
a9d0ada
242da2d
af08924
242da2d
a9d0ada
 
 
 
 
 
 
 
 
 
529a636
 
af08924
a9d0ada
242da2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import os
from datetime import datetime
from PyPDF2 import PdfReader
from docx import Document
import streamlit as st
from groq import Groq

# βœ… Streamlit Page Config
st.set_page_config(page_title="AI Study Plan Assistant", layout="wide")

# βœ… Load Groq Client
@st.cache_resource
def load_groq_client():
    return Groq(api_key=os.getenv("GROQ_API_KEY"))

groq_client = load_groq_client()

# βœ… Extract text from files
def extract_text(file):
    ext = os.path.splitext(file.name)[1].lower()
    if ext == ".txt":
        return file.read().decode("utf-8")
    elif ext == ".docx":
        doc = Document(file)
        return "\n".join([para.text for para in doc.paragraphs])
    elif ext == ".pdf":
        pdf_reader = PdfReader(file)
        text = ""
        for page in pdf_reader.pages:
            if page.extract_text():
                text += page.extract_text() + "\n"
        return text
    else:
        raise ValueError("Only .txt, .docx, and .pdf files are supported.")

# βœ… Query Groq LLM
def query_groq(prompt, temperature=0.5):
    try:
        chat = groq_client.chat.completions.create(
            messages=[{"role": "user", "content": prompt}],
            model="mixtral-8x7b-32768",
            temperature=temperature
        )
        return chat.choices[0].message.content.strip()
    except Exception as e:
        return f"⚠️ Groq API Error: {str(e)}"

# βœ… Study Plan Generation
def generate_plan(file, hours_per_day, exam_date, language):
    try:
        content = extract_text(file)
        today = datetime.now().date()
        exam = datetime.strptime(exam_date.strip(), "%Y-%m-%d").date()
        days = (exam - today).days

        if days <= 0:
            return "❌ Exam date must be in the future."

        prompt = f"""Create a detailed {days}-day study plan from the syllabus below.
You should assume the user can study {hours_per_day} hours per day.
Output should be in {language}.

Syllabus:
\"\"\"
{content}
\"\"\"
"""
        return query_groq(prompt)
    except Exception as e:
        return f"⚠️ Error: {str(e)}"

# βœ… Question Answering
def ask_question(file, question):
    try:
        context = extract_text(file)
        prompt = f"""Based on the following study material, answer the question below:

Study Material:
\"\"\"
{context}
\"\"\"

Question: {question}
Answer:"""
        return query_groq(prompt)
    except Exception as e:
        return f"⚠️ Error: {str(e)}"

# βœ… Streamlit UI
st.sidebar.title("πŸ“š Study Assistant Options")
uploaded_file = st.sidebar.file_uploader("Upload syllabus (.txt, .docx, .pdf)", type=["txt", "docx", "pdf"])
study_hours = st.sidebar.number_input("Study hours per day", min_value=1, max_value=12, value=3)
exam_date = st.sidebar.text_input("Exam Date (YYYY-MM-DD)", value="2025-06-30")
language = st.sidebar.selectbox("Select Language", ["English", "Urdu"])

st.title("🧠 AI Study Plan & QA Assistant")

tab1, tab2 = st.tabs(["πŸ“… Generate Study Plan", "❓ Ask a Question"])

with tab1:
    st.subheader("Generate a Personalized Study Plan")
    if uploaded_file and st.button("Generate Study Plan"):
        result = generate_plan(uploaded_file, study_hours, exam_date, language)
        st.text_area("Study Plan", result, height=400)

with tab2:
    st.subheader("Ask Questions from Uploaded Material")
    question = st.text_input("Enter your question:")
    if uploaded_file and question and st.button("Get Answer"):
        answer = ask_question(uploaded_file, question)
        st.text_area("Answer", answer, height=200)