from langchain_community.vectorstores import FAISS from langchain.embeddings import SentenceTransformerEmbeddings embedding_model = SentenceTransformerEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") documents = ["Mathematical modeling is used in AI, finance, and physics.", "Differential equations are part of modeling."] vectorstore = FAISS.from_texts(documents, embedding_model) # Save FAISS index vectorstore.save_local("faiss_index")