File size: 8,120 Bytes
1c7a288
24ba781
 
 
 
 
 
 
 
 
 
 
 
6648f74
24ba781
 
 
6648f74
 
 
24ba781
6648f74
 
24ba781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6648f74
 
 
24ba781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6648f74
24ba781
6648f74
24ba781
 
 
 
 
 
6648f74
24ba781
 
6648f74
24ba781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6648f74
24ba781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114e659
 
24ba781
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import streamlit as st
from streamlit_option_menu import option_menu
import fitz  # PyMuPDF
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms import HuggingFaceHub
from langchain.chains import RetrievalQA
import tempfile
import os
import base64

# Page configuration
st.set_page_config(
    page_title="PDF Study Assistant",
    page_icon="πŸ“š",
    layout="wide",
    initial_sidebar_state="collapsed"
)

# Custom CSS for colorful design
st.markdown("""
<style>
    :root {
        --primary: #ff4b4b;
        --secondary: #ff9a3d;
        --accent1: #ffcb74;
        --accent2: #3a86ff;
        --background: #f0f2f6;
        --card: #ffffff;
    }
    
    .stApp {
        background: linear-gradient(135deg, var(--background) 0%, #e0e5ec 100%);
    }
    
    .stButton>button {
        background: linear-gradient(to right, var(--secondary), var(--primary));
        color: white;
        border-radius: 12px;
        padding: 8px 20px;
        font-weight: 600;
    }
    
    .stTextInput>div>div>input {
        border-radius: 12px;
        border: 2px solid var(--accent2);
        padding: 10px;
    }
    
    .card {
        background: var(--card);
        border-radius: 15px;
        box-shadow: 0 8px 16px rgba(0,0,0,0.1);
        padding: 20px;
        margin-bottom: 20px;
    }
    
    .header {
        background: linear-gradient(to right, var(--accent2), var(--primary));
        -webkit-background-clip: text;
        -webkit-text-fill-color: transparent;
        text-align: center;
        margin-bottom: 30px;
    }
    
    .tab-content {
        animation: fadeIn 0.5s ease-in-out;
    }
    
    @keyframes fadeIn {
        from { opacity: 0; }
        to { opacity: 1; }
    }
</style>
""", unsafe_allow_html=True)

# Initialize session state
if 'pdf_processed' not in st.session_state:
    st.session_state.pdf_processed = False
if 'qa_chain' not in st.session_state:
    st.session_state.qa_chain = None
if 'pages' not in st.session_state:
    st.session_state.pages = []

# Load models with caching
@st.cache_resource
def load_embedding_model():
    return HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")

@st.cache_resource
def load_qa_model():
    return HuggingFaceHub(
        repo_id="google/flan-t5-xxl",
        model_kwargs={"temperature": 0.5, "max_length": 512},
        huggingfacehub_api_token=os.getenv("HF_API_KEY")
    )

def process_pdf(pdf_file):
    """Extract text from PDF and create vector store"""
    with st.spinner("πŸ“– Reading PDF..."):
        doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
        text = ""
        st.session_state.pages = []
        for page in doc:
            text += page.get_text()
            st.session_state.pages.append(page.get_text())
    
    with st.spinner("πŸ” Processing text..."):
        text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=1000,
            chunk_overlap=200,
            length_function=len
        )
        chunks = text_splitter.split_text(text)
        
        embeddings = load_embedding_model()
        vector_store = FAISS.from_texts(chunks, embeddings)
        
        qa_model = load_qa_model()
        st.session_state.qa_chain = RetrievalQA.from_chain_type(
            llm=qa_model,
            chain_type="stuff",
            retriever=vector_store.as_retriever(search_kwargs={"k": 3}),
            return_source_documents=True
        )
    
    st.session_state.pdf_processed = True
    st.success("βœ… PDF processed successfully!")

def generate_qa_for_chapter(start_page, end_page):
    """Generate Q&A for specific chapter pages"""
    if start_page < 1 or end_page > len(st.session_state.pages) or start_page > end_page:
        st.error("Invalid page range")
        return []
    
    chapter_text = "\n".join(st.session_state.pages[start_page-1:end_page])
    
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=800,
        chunk_overlap=100,
        length_function=len
    )
    chunks = text_splitter.split_text(chapter_text)
    
    qa_pairs = []
    qa_model = load_qa_model()
    
    with st.spinner(f"🧠 Generating Q&A for pages {start_page}-{end_page}..."):
        for i, chunk in enumerate(chunks):
            if i % 2 == 0:  # Generate question
                prompt = f"Generate a study question based on: {chunk[:500]}"
                question = qa_model(prompt)[:120] + "?"
            else:  # Generate answer
                prompt = f"Answer the question: {qa_pairs[-1][0]} using context: {chunk[:500]}"
                answer = qa_model(prompt)
                qa_pairs[-1] = (qa_pairs[-1][0], answer)
    
    return qa_pairs

# App header
st.markdown("<h1 class='header'>πŸ“š PDF Study Assistant</h1>", unsafe_allow_html=True)

# PDF Upload Section
with st.container():
    st.subheader("πŸ“€ Upload Your Textbook/Notes")
    pdf_file = st.file_uploader("", type="pdf", label_visibility="collapsed")

# Main content
if pdf_file:
    if not st.session_state.pdf_processed:
        process_pdf(pdf_file)
    
    if st.session_state.pdf_processed:
        # Navigation tabs
        selected_tab = option_menu(
            None,
            ["Ask Questions", "Generate Chapter Q&A"],
            icons=["chat", "book"],
            menu_icon="cast",
            default_index=0,
            orientation="horizontal",
            styles={
                "container": {"padding": "0!important", "background-color": "#f9f9f9"},
                "nav-link": {"font-size": "16px", "font-weight": "bold"},
                "nav-link-selected": {"background": "linear-gradient(to right, #3a86ff, #ff4b4b)"},
            }
        )
        
        # Question Answering Tab
        if selected_tab == "Ask Questions":
            st.markdown("### πŸ’¬ Ask Questions About Your Document")
            user_question = st.text_input("Type your question here:", key="user_question")
            
            if user_question:
                with st.spinner("πŸ€” Thinking..."):
                    result = st.session_state.qa_chain({"query": user_question})
                    st.markdown(f"<div class='card'><b>Answer:</b> {result['result']}</div>", unsafe_allow_html=True)
                    
                    with st.expander("πŸ” See source passages"):
                        for i, doc in enumerate(result["source_documents"]):
                            st.markdown(f"**Passage {i+1}:** {doc.page_content[:500]}...")
        
        # Chapter Q&A Generation Tab
        elif selected_tab == "Generate Chapter Q&A":
            st.markdown("### πŸ“ Generate Q&A for Specific Chapter")
            col1, col2 = st.columns(2)
            with col1:
                start_page = st.number_input("Start Page", min_value=1, max_value=len(st.session_state.pages), value=1)
            with col2:
                end_page = st.number_input("End Page", min_value=1, max_value=len(st.session_state.pages), value=min(5, len(st.session_state.pages)))
            
            if st.button("Generate Q&A", key="generate_qa"):
                qa_pairs = generate_qa_for_chapter(start_page, end_page)
                
                if qa_pairs:
                    st.markdown(f"<h4>πŸ“– Generated Questions for Pages {start_page}-{end_page}</h4>", unsafe_allow_html=True)
                    for i, (question, answer) in enumerate(qa_pairs):
                        st.markdown(f"""
                        <div class='card'>
                            <b>Q{i+1}:</b> {question}<br>
                            <b>A{i+1}:</b> {answer}
                        </div>
                        """, unsafe_allow_html=True)
                else:
                    st.warning("No Q&A pairs generated. Try a different page range.")

# Footer
st.markdown("---")
st.markdown("""
<div style="text-align: center; padding: 20px;">
    Built with ❀️ for students | PDF Study Assistant v1.0
</div>
""", unsafe_allow_html=True)