Spaces:
Sleeping
Sleeping
File size: 8,120 Bytes
1c7a288 24ba781 6648f74 24ba781 6648f74 24ba781 6648f74 24ba781 6648f74 24ba781 6648f74 24ba781 6648f74 24ba781 6648f74 24ba781 6648f74 24ba781 6648f74 24ba781 114e659 24ba781 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import streamlit as st
from streamlit_option_menu import option_menu
import fitz # PyMuPDF
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms import HuggingFaceHub
from langchain.chains import RetrievalQA
import tempfile
import os
import base64
# Page configuration
st.set_page_config(
page_title="PDF Study Assistant",
page_icon="π",
layout="wide",
initial_sidebar_state="collapsed"
)
# Custom CSS for colorful design
st.markdown("""
<style>
:root {
--primary: #ff4b4b;
--secondary: #ff9a3d;
--accent1: #ffcb74;
--accent2: #3a86ff;
--background: #f0f2f6;
--card: #ffffff;
}
.stApp {
background: linear-gradient(135deg, var(--background) 0%, #e0e5ec 100%);
}
.stButton>button {
background: linear-gradient(to right, var(--secondary), var(--primary));
color: white;
border-radius: 12px;
padding: 8px 20px;
font-weight: 600;
}
.stTextInput>div>div>input {
border-radius: 12px;
border: 2px solid var(--accent2);
padding: 10px;
}
.card {
background: var(--card);
border-radius: 15px;
box-shadow: 0 8px 16px rgba(0,0,0,0.1);
padding: 20px;
margin-bottom: 20px;
}
.header {
background: linear-gradient(to right, var(--accent2), var(--primary));
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
text-align: center;
margin-bottom: 30px;
}
.tab-content {
animation: fadeIn 0.5s ease-in-out;
}
@keyframes fadeIn {
from { opacity: 0; }
to { opacity: 1; }
}
</style>
""", unsafe_allow_html=True)
# Initialize session state
if 'pdf_processed' not in st.session_state:
st.session_state.pdf_processed = False
if 'qa_chain' not in st.session_state:
st.session_state.qa_chain = None
if 'pages' not in st.session_state:
st.session_state.pages = []
# Load models with caching
@st.cache_resource
def load_embedding_model():
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
@st.cache_resource
def load_qa_model():
return HuggingFaceHub(
repo_id="google/flan-t5-xxl",
model_kwargs={"temperature": 0.5, "max_length": 512},
huggingfacehub_api_token=os.getenv("HF_API_KEY")
)
def process_pdf(pdf_file):
"""Extract text from PDF and create vector store"""
with st.spinner("π Reading PDF..."):
doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
text = ""
st.session_state.pages = []
for page in doc:
text += page.get_text()
st.session_state.pages.append(page.get_text())
with st.spinner("π Processing text..."):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
embeddings = load_embedding_model()
vector_store = FAISS.from_texts(chunks, embeddings)
qa_model = load_qa_model()
st.session_state.qa_chain = RetrievalQA.from_chain_type(
llm=qa_model,
chain_type="stuff",
retriever=vector_store.as_retriever(search_kwargs={"k": 3}),
return_source_documents=True
)
st.session_state.pdf_processed = True
st.success("β
PDF processed successfully!")
def generate_qa_for_chapter(start_page, end_page):
"""Generate Q&A for specific chapter pages"""
if start_page < 1 or end_page > len(st.session_state.pages) or start_page > end_page:
st.error("Invalid page range")
return []
chapter_text = "\n".join(st.session_state.pages[start_page-1:end_page])
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=800,
chunk_overlap=100,
length_function=len
)
chunks = text_splitter.split_text(chapter_text)
qa_pairs = []
qa_model = load_qa_model()
with st.spinner(f"π§ Generating Q&A for pages {start_page}-{end_page}..."):
for i, chunk in enumerate(chunks):
if i % 2 == 0: # Generate question
prompt = f"Generate a study question based on: {chunk[:500]}"
question = qa_model(prompt)[:120] + "?"
else: # Generate answer
prompt = f"Answer the question: {qa_pairs[-1][0]} using context: {chunk[:500]}"
answer = qa_model(prompt)
qa_pairs[-1] = (qa_pairs[-1][0], answer)
return qa_pairs
# App header
st.markdown("<h1 class='header'>π PDF Study Assistant</h1>", unsafe_allow_html=True)
# PDF Upload Section
with st.container():
st.subheader("π€ Upload Your Textbook/Notes")
pdf_file = st.file_uploader("", type="pdf", label_visibility="collapsed")
# Main content
if pdf_file:
if not st.session_state.pdf_processed:
process_pdf(pdf_file)
if st.session_state.pdf_processed:
# Navigation tabs
selected_tab = option_menu(
None,
["Ask Questions", "Generate Chapter Q&A"],
icons=["chat", "book"],
menu_icon="cast",
default_index=0,
orientation="horizontal",
styles={
"container": {"padding": "0!important", "background-color": "#f9f9f9"},
"nav-link": {"font-size": "16px", "font-weight": "bold"},
"nav-link-selected": {"background": "linear-gradient(to right, #3a86ff, #ff4b4b)"},
}
)
# Question Answering Tab
if selected_tab == "Ask Questions":
st.markdown("### π¬ Ask Questions About Your Document")
user_question = st.text_input("Type your question here:", key="user_question")
if user_question:
with st.spinner("π€ Thinking..."):
result = st.session_state.qa_chain({"query": user_question})
st.markdown(f"<div class='card'><b>Answer:</b> {result['result']}</div>", unsafe_allow_html=True)
with st.expander("π See source passages"):
for i, doc in enumerate(result["source_documents"]):
st.markdown(f"**Passage {i+1}:** {doc.page_content[:500]}...")
# Chapter Q&A Generation Tab
elif selected_tab == "Generate Chapter Q&A":
st.markdown("### π Generate Q&A for Specific Chapter")
col1, col2 = st.columns(2)
with col1:
start_page = st.number_input("Start Page", min_value=1, max_value=len(st.session_state.pages), value=1)
with col2:
end_page = st.number_input("End Page", min_value=1, max_value=len(st.session_state.pages), value=min(5, len(st.session_state.pages)))
if st.button("Generate Q&A", key="generate_qa"):
qa_pairs = generate_qa_for_chapter(start_page, end_page)
if qa_pairs:
st.markdown(f"<h4>π Generated Questions for Pages {start_page}-{end_page}</h4>", unsafe_allow_html=True)
for i, (question, answer) in enumerate(qa_pairs):
st.markdown(f"""
<div class='card'>
<b>Q{i+1}:</b> {question}<br>
<b>A{i+1}:</b> {answer}
</div>
""", unsafe_allow_html=True)
else:
st.warning("No Q&A pairs generated. Try a different page range.")
# Footer
st.markdown("---")
st.markdown("""
<div style="text-align: center; padding: 20px;">
Built with β€οΈ for students | PDF Study Assistant v1.0
</div>
""", unsafe_allow_html=True) |