Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,11 +4,11 @@ import fitz # PyMuPDF
|
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
6 |
from langchain_community.vectorstores import FAISS
|
7 |
-
from langchain_community.llms import HuggingFaceHub
|
8 |
from langchain.chains import RetrievalQA
|
9 |
-
import
|
|
|
10 |
import os
|
11 |
-
import
|
12 |
|
13 |
# Page configuration
|
14 |
st.set_page_config(
|
@@ -72,29 +72,52 @@ st.markdown("""
|
|
72 |
from { opacity: 0; }
|
73 |
to { opacity: 1; }
|
74 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
</style>
|
76 |
""", unsafe_allow_html=True)
|
77 |
|
78 |
# Initialize session state
|
79 |
if 'pdf_processed' not in st.session_state:
|
80 |
st.session_state.pdf_processed = False
|
81 |
-
if '
|
82 |
-
st.session_state.
|
83 |
if 'pages' not in st.session_state:
|
84 |
st.session_state.pages = []
|
|
|
|
|
85 |
|
86 |
-
# Load
|
87 |
@st.cache_resource
|
88 |
def load_embedding_model():
|
89 |
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
def process_pdf(pdf_file):
|
100 |
"""Extract text from PDF and create vector store"""
|
@@ -103,8 +126,9 @@ def process_pdf(pdf_file):
|
|
103 |
text = ""
|
104 |
st.session_state.pages = []
|
105 |
for page in doc:
|
106 |
-
|
107 |
-
|
|
|
108 |
|
109 |
with st.spinner("π Processing text..."):
|
110 |
text_splitter = RecursiveCharacterTextSplitter(
|
@@ -115,19 +139,44 @@ def process_pdf(pdf_file):
|
|
115 |
chunks = text_splitter.split_text(text)
|
116 |
|
117 |
embeddings = load_embedding_model()
|
118 |
-
vector_store = FAISS.from_texts(chunks, embeddings)
|
119 |
-
|
120 |
-
qa_model = load_qa_model()
|
121 |
-
st.session_state.qa_chain = RetrievalQA.from_chain_type(
|
122 |
-
llm=qa_model,
|
123 |
-
chain_type="stuff",
|
124 |
-
retriever=vector_store.as_retriever(search_kwargs={"k": 3}),
|
125 |
-
return_source_documents=True
|
126 |
-
)
|
127 |
|
128 |
st.session_state.pdf_processed = True
|
129 |
st.success("β
PDF processed successfully!")
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
def generate_qa_for_chapter(start_page, end_page):
|
132 |
"""Generate Q&A for specific chapter pages"""
|
133 |
if start_page < 1 or end_page > len(st.session_state.pages) or start_page > end_page:
|
@@ -144,17 +193,19 @@ def generate_qa_for_chapter(start_page, end_page):
|
|
144 |
chunks = text_splitter.split_text(chapter_text)
|
145 |
|
146 |
qa_pairs = []
|
147 |
-
qa_model = load_qa_model()
|
148 |
|
149 |
with st.spinner(f"π§ Generating Q&A for pages {start_page}-{end_page}..."):
|
150 |
for i, chunk in enumerate(chunks):
|
151 |
if i % 2 == 0: # Generate question
|
152 |
-
prompt = f"
|
153 |
-
question =
|
|
|
|
|
154 |
else: # Generate answer
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
158 |
|
159 |
return qa_pairs
|
160 |
|
@@ -175,8 +226,8 @@ if pdf_file:
|
|
175 |
# Navigation tabs
|
176 |
selected_tab = option_menu(
|
177 |
None,
|
178 |
-
["Ask Questions", "Generate Chapter Q&A"],
|
179 |
-
icons=["chat", "book"],
|
180 |
menu_icon="cast",
|
181 |
default_index=0,
|
182 |
orientation="horizontal",
|
@@ -194,11 +245,11 @@ if pdf_file:
|
|
194 |
|
195 |
if user_question:
|
196 |
with st.spinner("π€ Thinking..."):
|
197 |
-
|
198 |
-
st.markdown(f"<div class='card'><b>Answer:</b> {
|
199 |
|
200 |
with st.expander("π See source passages"):
|
201 |
-
for i, doc in enumerate(
|
202 |
st.markdown(f"**Passage {i+1}:** {doc.page_content[:500]}...")
|
203 |
|
204 |
# Chapter Q&A Generation Tab
|
@@ -224,11 +275,24 @@ if pdf_file:
|
|
224 |
""", unsafe_allow_html=True)
|
225 |
else:
|
226 |
st.warning("No Q&A pairs generated. Try a different page range.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
# Footer
|
229 |
st.markdown("---")
|
230 |
st.markdown("""
|
231 |
<div style="text-align: center; padding: 20px;">
|
232 |
-
Built with β€οΈ for students | PDF Study Assistant
|
233 |
</div>
|
234 |
""", unsafe_allow_html=True)
|
|
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
6 |
from langchain_community.vectorstores import FAISS
|
|
|
7 |
from langchain.chains import RetrievalQA
|
8 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
9 |
+
import requests
|
10 |
import os
|
11 |
+
import json
|
12 |
|
13 |
# Page configuration
|
14 |
st.set_page_config(
|
|
|
72 |
from { opacity: 0; }
|
73 |
to { opacity: 1; }
|
74 |
}
|
75 |
+
|
76 |
+
.spinner {
|
77 |
+
display: flex;
|
78 |
+
justify-content: center;
|
79 |
+
align-items: center;
|
80 |
+
height: 100px;
|
81 |
+
}
|
82 |
</style>
|
83 |
""", unsafe_allow_html=True)
|
84 |
|
85 |
# Initialize session state
|
86 |
if 'pdf_processed' not in st.session_state:
|
87 |
st.session_state.pdf_processed = False
|
88 |
+
if 'vector_store' not in st.session_state:
|
89 |
+
st.session_state.vector_store = None
|
90 |
if 'pages' not in st.session_state:
|
91 |
st.session_state.pages = []
|
92 |
+
if 'history' not in st.session_state:
|
93 |
+
st.session_state.history = []
|
94 |
|
95 |
+
# Load embedding model with caching
|
96 |
@st.cache_resource
|
97 |
def load_embedding_model():
|
98 |
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
99 |
|
100 |
+
def query_hf_inference_api(prompt, model="google/flan-t5-xxl", max_tokens=200):
|
101 |
+
"""Query Hugging Face Inference API directly"""
|
102 |
+
API_URL = f"https://api-inference.huggingface.co/models/{model}"
|
103 |
+
headers = {"Authorization": f"Bearer {os.getenv('HF_API_KEY')}"}
|
104 |
+
payload = {
|
105 |
+
"inputs": prompt,
|
106 |
+
"parameters": {
|
107 |
+
"max_new_tokens": max_tokens,
|
108 |
+
"temperature": 0.5,
|
109 |
+
"do_sample": False
|
110 |
+
}
|
111 |
+
}
|
112 |
+
|
113 |
+
try:
|
114 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
115 |
+
response.raise_for_status()
|
116 |
+
result = response.json()
|
117 |
+
return result[0]['generated_text'] if result else ""
|
118 |
+
except Exception as e:
|
119 |
+
st.error(f"Error querying model: {str(e)}")
|
120 |
+
return ""
|
121 |
|
122 |
def process_pdf(pdf_file):
|
123 |
"""Extract text from PDF and create vector store"""
|
|
|
126 |
text = ""
|
127 |
st.session_state.pages = []
|
128 |
for page in doc:
|
129 |
+
page_text = page.get_text()
|
130 |
+
text += page_text
|
131 |
+
st.session_state.pages.append(page_text)
|
132 |
|
133 |
with st.spinner("π Processing text..."):
|
134 |
text_splitter = RecursiveCharacterTextSplitter(
|
|
|
139 |
chunks = text_splitter.split_text(text)
|
140 |
|
141 |
embeddings = load_embedding_model()
|
142 |
+
st.session_state.vector_store = FAISS.from_texts(chunks, embeddings)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
st.session_state.pdf_processed = True
|
145 |
st.success("β
PDF processed successfully!")
|
146 |
|
147 |
+
def ask_question(question):
|
148 |
+
"""Answer a question using the vector store and Hugging Face API"""
|
149 |
+
if not st.session_state.vector_store:
|
150 |
+
return "PDF not processed yet", []
|
151 |
+
|
152 |
+
# Find relevant passages
|
153 |
+
docs = st.session_state.vector_store.similarity_search(question, k=3)
|
154 |
+
context = "\n\n".join([doc.page_content for doc in docs])
|
155 |
+
|
156 |
+
# Format prompt for the model
|
157 |
+
prompt = f"""
|
158 |
+
Based on the following context, answer the question.
|
159 |
+
If the answer isn't in the context, say "I don't know".
|
160 |
+
|
161 |
+
Context:
|
162 |
+
{context}
|
163 |
+
|
164 |
+
Question: {question}
|
165 |
+
Answer:
|
166 |
+
"""
|
167 |
+
|
168 |
+
# Query the model
|
169 |
+
answer = query_hf_inference_api(prompt)
|
170 |
+
|
171 |
+
# Add to history
|
172 |
+
st.session_state.history.append({
|
173 |
+
"question": question,
|
174 |
+
"answer": answer,
|
175 |
+
"sources": [doc.page_content for doc in docs]
|
176 |
+
})
|
177 |
+
|
178 |
+
return answer, docs
|
179 |
+
|
180 |
def generate_qa_for_chapter(start_page, end_page):
|
181 |
"""Generate Q&A for specific chapter pages"""
|
182 |
if start_page < 1 or end_page > len(st.session_state.pages) or start_page > end_page:
|
|
|
193 |
chunks = text_splitter.split_text(chapter_text)
|
194 |
|
195 |
qa_pairs = []
|
|
|
196 |
|
197 |
with st.spinner(f"π§ Generating Q&A for pages {start_page}-{end_page}..."):
|
198 |
for i, chunk in enumerate(chunks):
|
199 |
if i % 2 == 0: # Generate question
|
200 |
+
prompt = f"Based on this text, generate one study question: {chunk[:500]}"
|
201 |
+
question = query_hf_inference_api(prompt, max_tokens=100)
|
202 |
+
if question and not question.endswith("?"):
|
203 |
+
question += "?"
|
204 |
else: # Generate answer
|
205 |
+
if qa_pairs: # Ensure we have a question to answer
|
206 |
+
prompt = f"Answer this question: {qa_pairs[-1][0]} using this context: {chunk[:500]}"
|
207 |
+
answer = query_hf_inference_api(prompt, max_tokens=200)
|
208 |
+
qa_pairs[-1] = (qa_pairs[-1][0], answer)
|
209 |
|
210 |
return qa_pairs
|
211 |
|
|
|
226 |
# Navigation tabs
|
227 |
selected_tab = option_menu(
|
228 |
None,
|
229 |
+
["Ask Questions", "Generate Chapter Q&A", "History"],
|
230 |
+
icons=["chat", "book", "clock-history"],
|
231 |
menu_icon="cast",
|
232 |
default_index=0,
|
233 |
orientation="horizontal",
|
|
|
245 |
|
246 |
if user_question:
|
247 |
with st.spinner("π€ Thinking..."):
|
248 |
+
answer, docs = ask_question(user_question)
|
249 |
+
st.markdown(f"<div class='card'><b>Answer:</b> {answer}</div>", unsafe_allow_html=True)
|
250 |
|
251 |
with st.expander("π See source passages"):
|
252 |
+
for i, doc in enumerate(docs):
|
253 |
st.markdown(f"**Passage {i+1}:** {doc.page_content[:500]}...")
|
254 |
|
255 |
# Chapter Q&A Generation Tab
|
|
|
275 |
""", unsafe_allow_html=True)
|
276 |
else:
|
277 |
st.warning("No Q&A pairs generated. Try a different page range.")
|
278 |
+
|
279 |
+
# History Tab
|
280 |
+
elif selected_tab == "History":
|
281 |
+
st.markdown("### β³ Question History")
|
282 |
+
if not st.session_state.history:
|
283 |
+
st.info("No questions asked yet.")
|
284 |
+
else:
|
285 |
+
for i, item in enumerate(reversed(st.session_state.history)):
|
286 |
+
with st.expander(f"Q{i+1}: {item['question']}"):
|
287 |
+
st.markdown(f"**Answer:** {item['answer']}")
|
288 |
+
st.markdown("**Source Passages:**")
|
289 |
+
for j, source in enumerate(item['sources']):
|
290 |
+
st.markdown(f"{j+1}. {source[:500]}...")
|
291 |
|
292 |
# Footer
|
293 |
st.markdown("---")
|
294 |
st.markdown("""
|
295 |
<div style="text-align: center; padding: 20px;">
|
296 |
+
Built with β€οΈ for students | PDF Study Assistant v2.0
|
297 |
</div>
|
298 |
""", unsafe_allow_html=True)
|