Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,14 +5,12 @@ from langchain_community.document_loaders import PyPDFLoader
|
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
from langchain_community.vectorstores import FAISS
|
7 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
8 |
-
from
|
9 |
-
from langchain.
|
10 |
-
from
|
11 |
-
from langchain_core.runnables import RunnablePassthrough
|
12 |
-
from langchain_core.output_parsers import StrOutputParser
|
13 |
import base64
|
14 |
|
15 |
-
# Set page config
|
16 |
st.set_page_config(
|
17 |
page_title="EduQuery - Smart PDF Assistant",
|
18 |
page_icon="π",
|
@@ -20,11 +18,19 @@ st.set_page_config(
|
|
20 |
initial_sidebar_state="collapsed"
|
21 |
)
|
22 |
|
23 |
-
# Embedded CSS for
|
24 |
st.markdown("""
|
25 |
<style>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
body {
|
27 |
-
background-color: #
|
|
|
28 |
}
|
29 |
|
30 |
.stApp {
|
@@ -34,37 +40,47 @@ body {
|
|
34 |
}
|
35 |
|
36 |
.header {
|
37 |
-
background: linear-gradient(135deg,
|
38 |
color: white;
|
39 |
padding: 2rem;
|
40 |
border-radius: 15px;
|
41 |
margin-bottom: 2rem;
|
42 |
text-align: center;
|
|
|
43 |
}
|
44 |
|
45 |
.header h1 {
|
46 |
-
font-size: 2.
|
47 |
margin-bottom: 0.5rem;
|
48 |
}
|
49 |
|
50 |
.stButton>button {
|
51 |
-
background: linear-gradient(135deg,
|
52 |
color: white;
|
53 |
border: none;
|
54 |
border-radius: 25px;
|
55 |
-
padding: 0.
|
56 |
font-weight: bold;
|
|
|
57 |
transition: all 0.3s ease;
|
|
|
58 |
}
|
59 |
|
60 |
.stButton>button:hover {
|
61 |
transform: scale(1.05);
|
62 |
-
box-shadow: 0 5px 15px rgba(
|
63 |
}
|
64 |
|
65 |
.stTextInput>div>div>input {
|
66 |
border-radius: 25px;
|
67 |
-
padding: 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
}
|
69 |
|
70 |
.stChatMessage {
|
@@ -72,31 +88,55 @@ body {
|
|
72 |
border-radius: 20px;
|
73 |
margin-bottom: 1rem;
|
74 |
max-width: 80%;
|
|
|
75 |
}
|
76 |
|
77 |
.stChatMessage[data-testid="user"] {
|
78 |
-
background: linear-gradient(135deg, #
|
79 |
margin-left: auto;
|
|
|
80 |
}
|
81 |
|
82 |
.stChatMessage[data-testid="assistant"] {
|
83 |
-
background: linear-gradient(135deg, #
|
84 |
margin-right: auto;
|
|
|
|
|
85 |
}
|
86 |
|
87 |
-
.
|
88 |
-
background: linear-gradient(135deg, #
|
89 |
-
padding:
|
90 |
border-radius: 15px;
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
}
|
94 |
|
95 |
.footer {
|
96 |
text-align: center;
|
97 |
-
color: #
|
98 |
-
padding-top:
|
99 |
font-size: 0.9rem;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
}
|
101 |
</style>
|
102 |
""", unsafe_allow_html=True)
|
@@ -112,11 +152,10 @@ st.markdown("""
|
|
112 |
# Initialize session state
|
113 |
if "vector_store" not in st.session_state:
|
114 |
st.session_state.vector_store = None
|
115 |
-
if "
|
116 |
-
st.session_state.
|
117 |
-
|
118 |
-
|
119 |
-
MODEL_NAME = "nous-hermes2" # Best open-source model for instruction following
|
120 |
|
121 |
# PDF Processing
|
122 |
def process_pdf(pdf_file):
|
@@ -125,129 +164,96 @@ def process_pdf(pdf_file):
|
|
125 |
tmp_path = tmp_file.name
|
126 |
|
127 |
loader = PyPDFLoader(tmp_path)
|
128 |
-
|
129 |
|
130 |
text_splitter = RecursiveCharacterTextSplitter(
|
131 |
-
chunk_size=
|
132 |
-
chunk_overlap=
|
133 |
-
length_function=len
|
134 |
)
|
135 |
-
chunks = text_splitter.split_documents(
|
136 |
|
137 |
-
embeddings = HuggingFaceEmbeddings(model_name="
|
138 |
vector_store = FAISS.from_documents(chunks, embeddings)
|
139 |
|
140 |
os.unlink(tmp_path)
|
141 |
return vector_store
|
142 |
|
143 |
-
#
|
144 |
def setup_qa_chain(vector_store):
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
Question: {question}
|
152 |
-
|
153 |
-
Provide a clear, concise answer with page number references. If unsure, say "I couldn't find this information in the document".
|
154 |
-
"""
|
155 |
-
|
156 |
-
prompt = PromptTemplate(
|
157 |
-
template=custom_prompt,
|
158 |
-
input_variables=["context", "question"]
|
159 |
)
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
{"context": retriever, "question": RunnablePassthrough()}
|
165 |
-
| prompt
|
166 |
-
| llm
|
167 |
-
| StrOutputParser()
|
168 |
)
|
169 |
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
prompt = PromptTemplate(
|
177 |
-
input_variables=["chapter_title"],
|
178 |
-
template="""
|
179 |
-
You are an expert educator. Generate 5 important questions and answers about '{chapter_title}'
|
180 |
-
that would help students understand key concepts. Format as:
|
181 |
-
|
182 |
-
Q1: [Question]
|
183 |
-
A1: [Answer with page reference]
|
184 |
-
|
185 |
-
Q2: [Question]
|
186 |
-
A2: [Answer with page reference]
|
187 |
-
..."""
|
188 |
)
|
189 |
|
190 |
-
|
191 |
-
return chain.invoke({"chapter_title": chapter_title})
|
192 |
|
193 |
# File upload section
|
194 |
-
st.
|
|
|
|
|
|
|
|
|
195 |
uploaded_file = st.file_uploader("", type="pdf", accept_multiple_files=False, label_visibility="collapsed")
|
196 |
|
|
|
|
|
197 |
if uploaded_file:
|
198 |
with st.spinner("Processing PDF..."):
|
199 |
st.session_state.vector_store = process_pdf(uploaded_file)
|
|
|
200 |
st.success("PDF processed successfully! You can now ask questions.")
|
201 |
|
202 |
-
#
|
203 |
-
|
|
|
|
|
|
|
204 |
|
205 |
-
#
|
206 |
-
|
207 |
-
st.
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
st.session_state.vector_store,
|
214 |
-
chapter_title
|
215 |
-
)
|
216 |
-
st.markdown(f"<div class='qa-box'>{questions}</div>", unsafe_allow_html=True)
|
217 |
-
elif chapter_title and not st.session_state.vector_store:
|
218 |
st.warning("Please upload a PDF first")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
-
|
221 |
-
with col2:
|
222 |
-
st.subheader("π¬ Ask Anything About the Document")
|
223 |
-
|
224 |
-
for message in st.session_state.messages:
|
225 |
-
with st.chat_message(message["role"]):
|
226 |
-
st.markdown(message["content"])
|
227 |
-
|
228 |
-
if prompt := st.chat_input("Your question..."):
|
229 |
-
if not st.session_state.vector_store:
|
230 |
-
st.warning("Please upload a PDF first")
|
231 |
-
st.stop()
|
232 |
-
|
233 |
-
st.session_state.messages.append({"role": "user", "content": prompt})
|
234 |
-
with st.chat_message("user"):
|
235 |
-
st.markdown(prompt)
|
236 |
-
|
237 |
-
with st.chat_message("assistant"):
|
238 |
-
with st.spinner("Thinking..."):
|
239 |
-
qa_chain = setup_qa_chain(st.session_state.vector_store)
|
240 |
-
response = qa_chain.invoke(prompt)
|
241 |
-
st.markdown(response)
|
242 |
-
st.session_state.messages.append({"role": "assistant", "content": response})
|
243 |
|
244 |
# Footer
|
245 |
-
st.markdown("
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
</div>
|
251 |
-
""",
|
252 |
-
unsafe_allow_html=True
|
253 |
-
)
|
|
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
from langchain_community.vectorstores import FAISS
|
7 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
8 |
+
from langchain.chains import ConversationalRetrievalChain
|
9 |
+
from langchain.memory import ConversationBufferMemory
|
10 |
+
from langchain_community.llms import HuggingFaceHub
|
|
|
|
|
11 |
import base64
|
12 |
|
13 |
+
# Set page config with light purple theme
|
14 |
st.set_page_config(
|
15 |
page_title="EduQuery - Smart PDF Assistant",
|
16 |
page_icon="π",
|
|
|
18 |
initial_sidebar_state="collapsed"
|
19 |
)
|
20 |
|
21 |
+
# Embedded CSS for light purple UI
|
22 |
st.markdown("""
|
23 |
<style>
|
24 |
+
:root {
|
25 |
+
--primary: #8a4fff;
|
26 |
+
--secondary: #d0bcff;
|
27 |
+
--light: #f3edff;
|
28 |
+
--dark: #4a2b80;
|
29 |
+
}
|
30 |
+
|
31 |
body {
|
32 |
+
background-color: #f8f5ff;
|
33 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
34 |
}
|
35 |
|
36 |
.stApp {
|
|
|
40 |
}
|
41 |
|
42 |
.header {
|
43 |
+
background: linear-gradient(135deg, var(--primary) 0%, var(--dark) 100%);
|
44 |
color: white;
|
45 |
padding: 2rem;
|
46 |
border-radius: 15px;
|
47 |
margin-bottom: 2rem;
|
48 |
text-align: center;
|
49 |
+
box-shadow: 0 4px 20px rgba(138, 79, 255, 0.2);
|
50 |
}
|
51 |
|
52 |
.header h1 {
|
53 |
+
font-size: 2.8rem;
|
54 |
margin-bottom: 0.5rem;
|
55 |
}
|
56 |
|
57 |
.stButton>button {
|
58 |
+
background: linear-gradient(135deg, var(--primary) 0%, var(--dark) 100%);
|
59 |
color: white;
|
60 |
border: none;
|
61 |
border-radius: 25px;
|
62 |
+
padding: 0.75rem 2rem;
|
63 |
font-weight: bold;
|
64 |
+
font-size: 1rem;
|
65 |
transition: all 0.3s ease;
|
66 |
+
margin-top: 1rem;
|
67 |
}
|
68 |
|
69 |
.stButton>button:hover {
|
70 |
transform: scale(1.05);
|
71 |
+
box-shadow: 0 5px 15px rgba(138, 79, 255, 0.3);
|
72 |
}
|
73 |
|
74 |
.stTextInput>div>div>input {
|
75 |
border-radius: 25px;
|
76 |
+
padding: 0.9rem 1.5rem;
|
77 |
+
border: 1px solid var(--secondary);
|
78 |
+
background-color: var(--light);
|
79 |
+
}
|
80 |
+
|
81 |
+
.stTextInput>div>div>input:focus {
|
82 |
+
border-color: var(--primary);
|
83 |
+
box-shadow: 0 0 0 2px rgba(138, 79, 255, 0.2);
|
84 |
}
|
85 |
|
86 |
.stChatMessage {
|
|
|
88 |
border-radius: 20px;
|
89 |
margin-bottom: 1rem;
|
90 |
max-width: 80%;
|
91 |
+
box-shadow: 0 4px 12px rgba(0,0,0,0.05);
|
92 |
}
|
93 |
|
94 |
.stChatMessage[data-testid="user"] {
|
95 |
+
background: linear-gradient(135deg, #d0bcff 0%, #b8a1ff 100%);
|
96 |
margin-left: auto;
|
97 |
+
color: #4a2b80;
|
98 |
}
|
99 |
|
100 |
.stChatMessage[data-testid="assistant"] {
|
101 |
+
background: linear-gradient(135deg, #e6dcff 0%, #f3edff 100%);
|
102 |
margin-right: auto;
|
103 |
+
color: #4a2b80;
|
104 |
+
border: 1px solid var(--secondary);
|
105 |
}
|
106 |
|
107 |
+
.upload-area {
|
108 |
+
background: linear-gradient(135deg, #f3edff 0%, #e6dcff 100%);
|
109 |
+
padding: 2rem;
|
110 |
border-radius: 15px;
|
111 |
+
text-align: center;
|
112 |
+
border: 2px dashed var(--primary);
|
113 |
+
margin-bottom: 2rem;
|
114 |
+
}
|
115 |
+
|
116 |
+
.chat-area {
|
117 |
+
background: white;
|
118 |
+
padding: 2rem;
|
119 |
+
border-radius: 15px;
|
120 |
+
box-shadow: 0 4px 20px rgba(138, 79, 255, 0.1);
|
121 |
+
height: 500px;
|
122 |
+
overflow-y: auto;
|
123 |
}
|
124 |
|
125 |
.footer {
|
126 |
text-align: center;
|
127 |
+
color: #8a4fff;
|
128 |
+
padding-top: 2rem;
|
129 |
font-size: 0.9rem;
|
130 |
+
margin-top: 2rem;
|
131 |
+
border-top: 1px solid var(--secondary);
|
132 |
+
}
|
133 |
+
|
134 |
+
.spinner {
|
135 |
+
color: var(--primary) !important;
|
136 |
+
}
|
137 |
+
|
138 |
+
.stSpinner > div > div {
|
139 |
+
border-top-color: var(--primary) !important;
|
140 |
}
|
141 |
</style>
|
142 |
""", unsafe_allow_html=True)
|
|
|
152 |
# Initialize session state
|
153 |
if "vector_store" not in st.session_state:
|
154 |
st.session_state.vector_store = None
|
155 |
+
if "chat_history" not in st.session_state:
|
156 |
+
st.session_state.chat_history = []
|
157 |
+
if "qa_chain" not in st.session_state:
|
158 |
+
st.session_state.qa_chain = None
|
|
|
159 |
|
160 |
# PDF Processing
|
161 |
def process_pdf(pdf_file):
|
|
|
164 |
tmp_path = tmp_file.name
|
165 |
|
166 |
loader = PyPDFLoader(tmp_path)
|
167 |
+
pages = loader.load_and_split()
|
168 |
|
169 |
text_splitter = RecursiveCharacterTextSplitter(
|
170 |
+
chunk_size=800,
|
171 |
+
chunk_overlap=150
|
|
|
172 |
)
|
173 |
+
chunks = text_splitter.split_documents(pages)
|
174 |
|
175 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
176 |
vector_store = FAISS.from_documents(chunks, embeddings)
|
177 |
|
178 |
os.unlink(tmp_path)
|
179 |
return vector_store
|
180 |
|
181 |
+
# Setup QA Chain
|
182 |
def setup_qa_chain(vector_store):
|
183 |
+
# Use Mistral-7B from Hugging Face Hub
|
184 |
+
repo_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
185 |
+
llm = HuggingFaceHub(
|
186 |
+
repo_id=repo_id,
|
187 |
+
model_kwargs={"temperature": 0.5, "max_new_tokens": 500}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
)
|
189 |
|
190 |
+
memory = ConversationBufferMemory(
|
191 |
+
memory_key="chat_history",
|
192 |
+
return_messages=True
|
|
|
|
|
|
|
|
|
193 |
)
|
194 |
|
195 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
196 |
+
llm=llm,
|
197 |
+
retriever=vector_store.as_retriever(search_kwargs={"k": 3}),
|
198 |
+
memory=memory,
|
199 |
+
chain_type="stuff"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
)
|
201 |
|
202 |
+
return qa_chain
|
|
|
203 |
|
204 |
# File upload section
|
205 |
+
st.markdown("""
|
206 |
+
<div class="upload-area">
|
207 |
+
<h3>π€ Upload Your Textbook/Notes</h3>
|
208 |
+
""", unsafe_allow_html=True)
|
209 |
+
|
210 |
uploaded_file = st.file_uploader("", type="pdf", accept_multiple_files=False, label_visibility="collapsed")
|
211 |
|
212 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
213 |
+
|
214 |
if uploaded_file:
|
215 |
with st.spinner("Processing PDF..."):
|
216 |
st.session_state.vector_store = process_pdf(uploaded_file)
|
217 |
+
st.session_state.qa_chain = setup_qa_chain(st.session_state.vector_store)
|
218 |
st.success("PDF processed successfully! You can now ask questions.")
|
219 |
|
220 |
+
# Chat interface
|
221 |
+
st.markdown("""
|
222 |
+
<div class="chat-area">
|
223 |
+
<h3>π¬ Ask Anything About the Document</h3>
|
224 |
+
""", unsafe_allow_html=True)
|
225 |
|
226 |
+
# Display chat history
|
227 |
+
for message in st.session_state.chat_history:
|
228 |
+
with st.chat_message(message["role"]):
|
229 |
+
st.markdown(message["content"])
|
230 |
+
|
231 |
+
# User input
|
232 |
+
if prompt := st.chat_input("Your question..."):
|
233 |
+
if not st.session_state.vector_store:
|
|
|
|
|
|
|
|
|
|
|
234 |
st.warning("Please upload a PDF first")
|
235 |
+
st.stop()
|
236 |
+
|
237 |
+
# Add user message to chat history
|
238 |
+
st.session_state.chat_history.append({"role": "user", "content": prompt})
|
239 |
+
with st.chat_message("user"):
|
240 |
+
st.markdown(prompt)
|
241 |
+
|
242 |
+
# Get assistant response
|
243 |
+
with st.chat_message("assistant"):
|
244 |
+
with st.spinner("Thinking..."):
|
245 |
+
response = st.session_state.qa_chain({"question": prompt})
|
246 |
+
answer = response["answer"]
|
247 |
+
st.markdown(answer)
|
248 |
+
|
249 |
+
# Add assistant response to chat history
|
250 |
+
st.session_state.chat_history.append({"role": "assistant", "content": answer})
|
251 |
|
252 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
# Footer
|
255 |
+
st.markdown("""
|
256 |
+
<div class="footer">
|
257 |
+
<p>EduQuery - Helping students learn smarter β’ Powered by Mistral-7B and LangChain</p>
|
258 |
+
</div>
|
259 |
+
""", unsafe_allow_html=True)
|
|
|
|
|
|
|
|