Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,423 +1,179 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
-
import
|
|
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
6 |
from langchain_community.vectorstores import FAISS
|
7 |
-
import
|
8 |
-
import
|
9 |
-
import
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
#
|
12 |
st.set_page_config(
|
13 |
-
page_title="PDF
|
14 |
page_icon="π",
|
15 |
layout="wide",
|
16 |
initial_sidebar_state="collapsed"
|
17 |
)
|
18 |
|
19 |
-
# Custom CSS for colorful
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
st.markdown("""
|
21 |
-
<
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
--accent1: #ffcb74;
|
26 |
-
--accent2: #3a86ff;
|
27 |
-
--background: #f0f2f6;
|
28 |
-
--card: #ffffff;
|
29 |
-
}
|
30 |
-
|
31 |
-
.stApp {
|
32 |
-
background: linear-gradient(135deg, var(--background) 0%, #e0e5ec 100%);
|
33 |
-
}
|
34 |
-
|
35 |
-
.stButton>button {
|
36 |
-
background: linear-gradient(to right, var(--secondary), var(--primary));
|
37 |
-
color: white;
|
38 |
-
border-radius: 12px;
|
39 |
-
padding: 8px 20px;
|
40 |
-
font-weight: 600;
|
41 |
-
}
|
42 |
-
|
43 |
-
.stTextInput>div>div>input {
|
44 |
-
border-radius: 12px;
|
45 |
-
border: 2px solid var(--accent2);
|
46 |
-
padding: 10px;
|
47 |
-
}
|
48 |
-
|
49 |
-
.card {
|
50 |
-
background: var(--card);
|
51 |
-
border-radius: 15px;
|
52 |
-
box-shadow: 0 8px 16px rgba(0,0,0,0.1);
|
53 |
-
padding: 20px;
|
54 |
-
margin-bottom: 20px;
|
55 |
-
}
|
56 |
-
|
57 |
-
.header {
|
58 |
-
background: linear-gradient(to right, var(--accent2), var(--primary));
|
59 |
-
-webkit-background-clip: text;
|
60 |
-
-webkit-text-fill-color: transparent;
|
61 |
-
text-align: center;
|
62 |
-
margin-bottom: 30px;
|
63 |
-
}
|
64 |
-
|
65 |
-
.tab-content {
|
66 |
-
animation: fadeIn 0.5s ease-in-out;
|
67 |
-
}
|
68 |
-
|
69 |
-
.error {
|
70 |
-
background-color: #ffebee;
|
71 |
-
border-left: 4px solid #f44336;
|
72 |
-
padding: 10px;
|
73 |
-
margin: 10px 0;
|
74 |
-
}
|
75 |
-
|
76 |
-
.info {
|
77 |
-
background-color: #e3f2fd;
|
78 |
-
border-left: 4px solid #2196f3;
|
79 |
-
padding: 10px;
|
80 |
-
margin: 10px 0;
|
81 |
-
}
|
82 |
-
|
83 |
-
.success {
|
84 |
-
background-color: #e8f5e9;
|
85 |
-
border-left: 4px solid #4caf50;
|
86 |
-
padding: 10px;
|
87 |
-
margin: 10px 0;
|
88 |
-
}
|
89 |
-
|
90 |
-
@keyframes fadeIn {
|
91 |
-
from { opacity: 0; }
|
92 |
-
to { opacity: 1; }
|
93 |
-
}
|
94 |
-
</style>
|
95 |
""", unsafe_allow_html=True)
|
96 |
|
97 |
# Initialize session state
|
98 |
-
if
|
99 |
-
st.session_state.pdf_processed = False
|
100 |
-
if 'vector_store' not in st.session_state:
|
101 |
st.session_state.vector_store = None
|
102 |
-
if
|
103 |
-
st.session_state.
|
104 |
-
if 'history' not in st.session_state:
|
105 |
-
st.session_state.history = []
|
106 |
-
if 'token_valid' not in st.session_state:
|
107 |
-
st.session_state.token_valid = None
|
108 |
-
|
109 |
-
# Load embedding model with caching
|
110 |
-
@st.cache_resource
|
111 |
-
def load_embedding_model():
|
112 |
-
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
113 |
-
|
114 |
-
def check_token_validity():
|
115 |
-
"""Check if the token is valid by making a simple API call"""
|
116 |
-
if not os.getenv("HF_API_KEY"):
|
117 |
-
return False
|
118 |
-
|
119 |
-
try:
|
120 |
-
headers = {"Authorization": f"Bearer {os.getenv('HF_API_KEY')}"}
|
121 |
-
response = requests.get("https://huggingface.co/api/whoami", headers=headers)
|
122 |
-
return response.status_code == 200
|
123 |
-
except:
|
124 |
-
return False
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
API_URL = f"https://api-inference.huggingface.co/models/{model}"
|
129 |
-
headers = {"Authorization": f"Bearer {os.getenv('HF_API_KEY')}"} if os.getenv('HF_API_KEY') else {}
|
130 |
-
|
131 |
-
payload = {
|
132 |
-
"inputs": prompt,
|
133 |
-
"parameters": {
|
134 |
-
"max_new_tokens": max_tokens,
|
135 |
-
"temperature": 0.5,
|
136 |
-
"do_sample": False
|
137 |
-
}
|
138 |
-
}
|
139 |
-
|
140 |
-
try:
|
141 |
-
response = requests.post(API_URL, headers=headers, json=payload)
|
142 |
-
|
143 |
-
if response.status_code == 200:
|
144 |
-
result = response.json()
|
145 |
-
return result[0]['generated_text'] if result else ""
|
146 |
-
|
147 |
-
elif response.status_code == 403:
|
148 |
-
# Detailed debug information
|
149 |
-
st.session_state.token_valid = check_token_validity()
|
150 |
-
|
151 |
-
debug_info = f"""
|
152 |
-
<div class="error">
|
153 |
-
<h4>403 Forbidden Error</h4>
|
154 |
-
<p>Token is set: <strong>{'Yes' if os.getenv('HF_API_KEY') else 'No'}</strong></p>
|
155 |
-
<p>Token valid: <strong>{'Yes' if st.session_state.token_valid else 'No'}</strong></p>
|
156 |
-
<p>Model: {model}</p>
|
157 |
-
<p>Possible solutions:</p>
|
158 |
-
<ol>
|
159 |
-
<li>Visit the <a href="https://huggingface.co/{model}" target="_blank">model page</a> and click "Agree and access repository"</li>
|
160 |
-
<li>Ensure your token has "read" permissions</li>
|
161 |
-
<li>Wait 5-10 minutes after accepting terms</li>
|
162 |
-
<li>Try a different model using the dropdown below</li>
|
163 |
-
</ol>
|
164 |
-
</div>
|
165 |
-
"""
|
166 |
-
st.markdown(debug_info, unsafe_allow_html=True)
|
167 |
-
return ""
|
168 |
-
|
169 |
-
elif response.status_code == 429:
|
170 |
-
st.warning("Rate limit exceeded. Waiting and retrying...")
|
171 |
-
time.sleep(3)
|
172 |
-
return query_hf_inference_api(prompt, max_tokens, model)
|
173 |
-
|
174 |
-
else:
|
175 |
-
st.error(f"API Error {response.status_code}: {response.text[:200]}")
|
176 |
-
return ""
|
177 |
-
|
178 |
-
except Exception as e:
|
179 |
-
st.error(f"Connection error: {str(e)}")
|
180 |
-
return ""
|
181 |
|
|
|
182 |
def process_pdf(pdf_file):
|
183 |
-
""
|
184 |
-
|
185 |
-
|
186 |
-
text = ""
|
187 |
-
st.session_state.pages = []
|
188 |
-
for page in doc:
|
189 |
-
page_text = page.get_text()
|
190 |
-
text += page_text
|
191 |
-
st.session_state.pages.append(page_text)
|
192 |
|
193 |
-
|
194 |
-
|
195 |
-
chunk_size=1000,
|
196 |
-
chunk_overlap=200,
|
197 |
-
length_function=len
|
198 |
-
)
|
199 |
-
chunks = text_splitter.split_text(text)
|
200 |
-
|
201 |
-
embeddings = load_embedding_model()
|
202 |
-
st.session_state.vector_store = FAISS.from_texts(chunks, embeddings)
|
203 |
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
return "PDF not processed yet", []
|
211 |
|
212 |
-
|
213 |
-
|
214 |
-
context = "\n\n".join([doc.page_content[:500] for doc in docs])
|
215 |
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
|
|
|
|
220 |
|
221 |
-
|
|
|
222 |
{context}
|
223 |
|
224 |
Question: {question}
|
225 |
-
Answer:
|
226 |
-
"""
|
227 |
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
# Add to history
|
232 |
-
st.session_state.history.append({
|
233 |
-
"question": question,
|
234 |
-
"answer": answer,
|
235 |
-
"sources": [doc.page_content for doc in docs],
|
236 |
-
"model": model_choice
|
237 |
-
})
|
238 |
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
if start_page < 1 or end_page > len(st.session_state.pages) or start_page > end_page:
|
244 |
-
st.error("Invalid page range")
|
245 |
-
return []
|
246 |
|
247 |
-
|
248 |
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
|
|
253 |
)
|
254 |
-
chunks = text_splitter.split_text(chapter_text)
|
255 |
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
|
|
|
|
|
|
272 |
|
273 |
-
|
|
|
274 |
|
275 |
-
#
|
276 |
-
st.
|
|
|
277 |
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
"
|
282 |
-
"mrm8488/t5-base-finetuned-question-generation-ap": "Question Generation",
|
283 |
-
"declare-lab/flan-alpaca-base": "Alpaca Base"
|
284 |
-
}
|
285 |
|
286 |
-
#
|
287 |
-
|
288 |
-
st.subheader("Hugging Face Token Status")
|
289 |
-
|
290 |
-
# Check token validity
|
291 |
-
token_valid = check_token_validity()
|
292 |
-
st.session_state.token_valid = token_valid
|
293 |
-
|
294 |
-
col1, col2 = st.columns(2)
|
295 |
-
with col1:
|
296 |
-
st.write(f"Token is set: {'β
Yes' if os.getenv('HF_API_KEY') else 'β No'}")
|
297 |
-
with col2:
|
298 |
-
st.write(f"Token is valid: {'β
Yes' if token_valid else 'β No'}")
|
299 |
-
|
300 |
-
if os.getenv('HF_API_KEY'):
|
301 |
-
st.markdown("""
|
302 |
-
<div class="info">
|
303 |
-
<p>Your token is set but we're still having issues. Try these steps:</p>
|
304 |
-
<ol>
|
305 |
-
<li>Visit the model page for your selected model</li>
|
306 |
-
<li>Click "Agree and access repository"</li>
|
307 |
-
<li>Wait 5-10 minutes for changes to propagate</li>
|
308 |
-
<li>Try a different model from the dropdown</li>
|
309 |
-
</ol>
|
310 |
-
</div>
|
311 |
-
""", unsafe_allow_html=True)
|
312 |
-
else:
|
313 |
-
st.markdown("""
|
314 |
-
<div class="error">
|
315 |
-
<p>Token is not set! Add it in your Space secrets:</p>
|
316 |
-
<ol>
|
317 |
-
<li>Go to your Space β Settings β Secrets</li>
|
318 |
-
<li>Add <code>HF_API_KEY</code> with your token</li>
|
319 |
-
<li>Redeploy the Space</li>
|
320 |
-
</ol>
|
321 |
-
<p>Get your token: <a href="https://huggingface.co/settings/tokens" target="_blank">https://huggingface.co/settings/tokens</a></p>
|
322 |
-
</div>
|
323 |
-
""", unsafe_allow_html=True)
|
324 |
|
325 |
-
#
|
326 |
-
with
|
327 |
-
st.subheader("
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
|
|
|
|
|
|
|
|
|
|
334 |
|
335 |
-
#
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
help="Some models require accepting terms on Hugging Face"
|
348 |
-
)
|
349 |
-
|
350 |
-
# Navigation tabs
|
351 |
-
selected_tab = option_menu(
|
352 |
-
None,
|
353 |
-
["Ask Questions", "Generate Chapter Q&A", "History"],
|
354 |
-
icons=["chat", "book", "clock-history"],
|
355 |
-
menu_icon="cast",
|
356 |
-
default_index=0,
|
357 |
-
orientation="horizontal",
|
358 |
-
styles={
|
359 |
-
"container": {"padding": "0!important", "background-color": "#f9f9f9"},
|
360 |
-
"nav-link": {"font-size": "16px", "font-weight": "bold"},
|
361 |
-
"nav-link-selected": {"background": "linear-gradient(to right, #3a86ff, #ff4b4b)"},
|
362 |
-
}
|
363 |
-
)
|
364 |
-
|
365 |
-
# Question Answering Tab
|
366 |
-
if selected_tab == "Ask Questions":
|
367 |
-
st.markdown("### π¬ Ask Questions About Your Document")
|
368 |
-
user_question = st.text_input("Type your question here:", key="user_question")
|
369 |
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
if answer:
|
374 |
-
st.markdown(f"<div class='card'><b>Answer:</b> {answer}</div>", unsafe_allow_html=True)
|
375 |
-
|
376 |
-
with st.expander("π See source passages"):
|
377 |
-
for i, doc in enumerate(docs):
|
378 |
-
st.markdown(f"**Passage {i+1}:** {doc.page_content[:500]}...")
|
379 |
-
|
380 |
-
# Chapter Q&A Generation Tab
|
381 |
-
elif selected_tab == "Generate Chapter Q&A":
|
382 |
-
st.markdown("### π Generate Q&A for Specific Chapter")
|
383 |
-
col1, col2 = st.columns(2)
|
384 |
-
with col1:
|
385 |
-
start_page = st.number_input("Start Page", min_value=1, max_value=len(st.session_state.pages), value=1)
|
386 |
-
with col2:
|
387 |
-
end_page = st.number_input("End Page", min_value=1, max_value=len(st.session_state.pages), value=min(5, len(st.session_state.pages)))
|
388 |
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
st.markdown(f"""
|
396 |
-
<div class='card'>
|
397 |
-
<b>Q{i+1}:</b> {question}<br>
|
398 |
-
<b>A{i+1}:</b> {answer}
|
399 |
-
</div>
|
400 |
-
""", unsafe_allow_html=True)
|
401 |
-
else:
|
402 |
-
st.warning("No Q&A pairs generated. Try a different page range.")
|
403 |
-
|
404 |
-
# History Tab
|
405 |
-
elif selected_tab == "History":
|
406 |
-
st.markdown("### β³ Question History")
|
407 |
-
if not st.session_state.history:
|
408 |
-
st.info("No questions asked yet.")
|
409 |
-
else:
|
410 |
-
for i, item in enumerate(reversed(st.session_state.history)):
|
411 |
-
with st.expander(f"Q{i+1}: {item['question']} ({MODEL_OPTIONS.get(item['model'], item['model'])})"):
|
412 |
-
st.markdown(f"**Answer:** {item['answer']}")
|
413 |
-
st.markdown("**Source Passages:**")
|
414 |
-
for j, source in enumerate(item['sources']):
|
415 |
-
st.markdown(f"{j+1}. {source[:500]}...")
|
416 |
|
417 |
# Footer
|
418 |
st.markdown("---")
|
419 |
-
st.markdown(
|
420 |
-
|
421 |
-
|
422 |
-
</
|
423 |
-
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import os
|
3 |
+
import tempfile
|
4 |
+
from langchain_community.document_loaders import PyPDFLoader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
6 |
from langchain_community.vectorstores import FAISS
|
7 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
8 |
+
from langchain_community.chat_models import ChatOllama
|
9 |
+
from langchain.chains import RetrievalQA
|
10 |
+
from langchain.prompts import PromptTemplate
|
11 |
+
from langchain_core.runnables import RunnablePassthrough
|
12 |
+
from langchain_core.output_parsers import StrOutputParser
|
13 |
+
import base64
|
14 |
|
15 |
+
# Set page config
|
16 |
st.set_page_config(
|
17 |
+
page_title="EduQuery - Smart PDF Assistant",
|
18 |
page_icon="π",
|
19 |
layout="wide",
|
20 |
initial_sidebar_state="collapsed"
|
21 |
)
|
22 |
|
23 |
+
# Custom CSS for colorful UI
|
24 |
+
def local_css(file_name):
|
25 |
+
with open(file_name) as f:
|
26 |
+
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
|
27 |
+
|
28 |
+
local_css("style.css")
|
29 |
+
|
30 |
+
# Header with gradient
|
31 |
st.markdown("""
|
32 |
+
<div class="header">
|
33 |
+
<h1>π EduQuery</h1>
|
34 |
+
<p>Smart PDF Assistant for Students</p>
|
35 |
+
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
""", unsafe_allow_html=True)
|
37 |
|
38 |
# Initialize session state
|
39 |
+
if "vector_store" not in st.session_state:
|
|
|
|
|
40 |
st.session_state.vector_store = None
|
41 |
+
if "messages" not in st.session_state:
|
42 |
+
st.session_state.messages = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
# Model selection
|
45 |
+
MODEL_NAME = "nous-hermes2" # Best open-source model for instruction following
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
# PDF Processing
|
48 |
def process_pdf(pdf_file):
|
49 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
|
50 |
+
tmp_file.write(pdf_file.getvalue())
|
51 |
+
tmp_path = tmp_file.name
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
loader = PyPDFLoader(tmp_path)
|
54 |
+
docs = loader.load()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
57 |
+
chunk_size=1000,
|
58 |
+
chunk_overlap=200,
|
59 |
+
length_function=len
|
60 |
+
)
|
61 |
+
chunks = text_splitter.split_documents(docs)
|
|
|
62 |
|
63 |
+
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-base-en-v1.5")
|
64 |
+
vector_store = FAISS.from_documents(chunks, embeddings)
|
|
|
65 |
|
66 |
+
os.unlink(tmp_path)
|
67 |
+
return vector_store
|
68 |
+
|
69 |
+
# RAG Setup
|
70 |
+
def setup_qa_chain(vector_store):
|
71 |
+
llm = ChatOllama(model=MODEL_NAME, temperature=0.3)
|
72 |
|
73 |
+
custom_prompt = """
|
74 |
+
You are an expert academic assistant. Answer the question based only on the following context:
|
75 |
{context}
|
76 |
|
77 |
Question: {question}
|
|
|
|
|
78 |
|
79 |
+
Provide a clear, concise answer with page number references. If unsure, say "I couldn't find this information in the document".
|
80 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
prompt = PromptTemplate(
|
83 |
+
template=custom_prompt,
|
84 |
+
input_variables=["context", "question"]
|
85 |
+
)
|
|
|
|
|
|
|
86 |
|
87 |
+
retriever = vector_store.as_retriever(search_kwargs={"k": 3})
|
88 |
|
89 |
+
qa_chain = (
|
90 |
+
{"context": retriever, "question": RunnablePassthrough()}
|
91 |
+
| prompt
|
92 |
+
| llm
|
93 |
+
| StrOutputParser()
|
94 |
)
|
|
|
95 |
|
96 |
+
return qa_chain
|
97 |
+
|
98 |
+
# Generate questions from chapter
|
99 |
+
def generate_chapter_questions(vector_store, chapter_title):
|
100 |
+
llm = ChatOllama(model=MODEL_NAME, temperature=0.7)
|
101 |
+
|
102 |
+
prompt = PromptTemplate(
|
103 |
+
input_variables=["chapter_title"],
|
104 |
+
template="""
|
105 |
+
You are an expert educator. Generate 5 important questions and answers about '{chapter_title}'
|
106 |
+
that would help students understand key concepts. Format as:
|
107 |
+
|
108 |
+
Q1: [Question]
|
109 |
+
A1: [Answer with page reference]
|
110 |
+
|
111 |
+
Q2: [Question]
|
112 |
+
A2: [Answer with page reference]
|
113 |
+
..."""
|
114 |
+
)
|
115 |
|
116 |
+
chain = prompt | llm | StrOutputParser()
|
117 |
+
return chain.invoke({"chapter_title": chapter_title})
|
118 |
|
119 |
+
# File upload section
|
120 |
+
st.subheader("π€ Upload Your Textbook/Notes")
|
121 |
+
uploaded_file = st.file_uploader("", type="pdf", accept_multiple_files=False)
|
122 |
|
123 |
+
if uploaded_file:
|
124 |
+
with st.spinner("Processing PDF..."):
|
125 |
+
st.session_state.vector_store = process_pdf(uploaded_file)
|
126 |
+
st.success("PDF processed successfully! You can now ask questions.")
|
|
|
|
|
|
|
127 |
|
128 |
+
# Main content columns
|
129 |
+
col1, col2 = st.columns([1, 2])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
+
# Chapter-based Q&A Generator
|
132 |
+
with col1:
|
133 |
+
st.subheader("π Generate Chapter Questions")
|
134 |
+
chapter_title = st.text_input("Enter chapter title/section name:")
|
135 |
+
|
136 |
+
if st.button("Generate Q&A") and chapter_title and st.session_state.vector_store:
|
137 |
+
with st.spinner(f"Generating questions about {chapter_title}..."):
|
138 |
+
questions = generate_chapter_questions(
|
139 |
+
st.session_state.vector_store,
|
140 |
+
chapter_title
|
141 |
+
)
|
142 |
+
st.markdown(f"<div class='qa-box'>{questions}</div>", unsafe_allow_html=True)
|
143 |
+
elif chapter_title and not st.session_state.vector_store:
|
144 |
+
st.warning("Please upload a PDF first")
|
145 |
|
146 |
+
# Chat interface
|
147 |
+
with col2:
|
148 |
+
st.subheader("π¬ Ask Anything About the Document")
|
149 |
+
|
150 |
+
for message in st.session_state.messages:
|
151 |
+
with st.chat_message(message["role"]):
|
152 |
+
st.markdown(message["content"])
|
153 |
+
|
154 |
+
if prompt := st.chat_input("Your question..."):
|
155 |
+
if not st.session_state.vector_store:
|
156 |
+
st.warning("Please upload a PDF first")
|
157 |
+
st.stop()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
160 |
+
with st.chat_message("user"):
|
161 |
+
st.markdown(prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
+
with st.chat_message("assistant"):
|
164 |
+
with st.spinner("Thinking..."):
|
165 |
+
qa_chain = setup_qa_chain(st.session_state.vector_store)
|
166 |
+
response = qa_chain.invoke(prompt)
|
167 |
+
st.markdown(response)
|
168 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
# Footer
|
171 |
st.markdown("---")
|
172 |
+
st.markdown(
|
173 |
+
"""
|
174 |
+
<div class="footer">
|
175 |
+
<p>EduQuery - Helping students learn smarter β’ Powered by Nous-Hermes2 and LangChain</p>
|
176 |
+
</div>
|
177 |
+
""",
|
178 |
+
unsafe_allow_html=True
|
179 |
+
)
|