import os import fitz # PyMuPDF for PDF processing import faiss import numpy as np import streamlit as st from langchain.text_splitter import RecursiveCharacterTextSplitter from sentence_transformers import SentenceTransformer from groq import Groq from dotenv import load_dotenv # Load API key load_dotenv() GROQ_API_KEY = os.getenv("GROQ_API_KEY") # Initialize Groq client client = Groq(api_key= GROQ_API_KEY) # Load sentence transformer model for embedding embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') def extract_text_from_pdf(pdf_path): """Extract text from a PDF file using PyMuPDF.""" doc = fitz.open(pdf_path) text = "" for page in doc: text += page.get_text("text") + "\n" return text.strip() def extract_text_from_pdf(pdf_path): """Extract text from a PDF file using PyMuPDF.""" doc = fitz.open(pdf_path) text = "" for page in doc: text += page.get_text("text") + "\n" return text.strip() def create_text_chunks(text, chunk_size=500, chunk_overlap=100): """Split text into chunks of specified size with overlap.""" text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap ) chunks = text_splitter.split_text(text) return chunks def create_faiss_index(chunks): """Generate embeddings for text chunks and store them in FAISS.""" embeddings = embedding_model.encode(chunks, convert_to_numpy=True) dimension = embeddings.shape[1] index = faiss.IndexFlatL2(dimension) # L2 (Euclidean) distance index.add(embeddings) # Add embeddings to FAISS index return index, embeddings, chunks def retrieve_similar_chunks(query, index, embeddings, chunks, top_k=3): """Retrieve the most relevant text chunks using FAISS.""" query_embedding = embedding_model.encode([query], convert_to_numpy=True) distances, indices = index.search(query_embedding, top_k) results = [chunks[idx] for idx in indices[0]] return results def query_groq_api(query, context): """Send the query along with retrieved context to Groq API.""" prompt = f"Use the following context to answer the question:\n\n{context}\n\nQuestion: {query}\nAnswer:" chat_completion = client.chat.completions.create( messages=[{"role": "user", "content": prompt}], model="llama-3.3-70b-versatile", ) return chat_completion.choices[0].message.content import streamlit as st st.title("📚 RAG-based PDF Query Application") st.write("Upload a PDF and ask questions!") # File Upload uploaded_file = st.file_uploader("Upload PDF", type="pdf") if uploaded_file is not None: pdf_path = "uploaded_document.pdf" # Save file temporarily with open(pdf_path, "wb") as f: f.write(uploaded_file.getbuffer()) # Process the PDF st.write("Processing PDF...") text = extract_text_from_pdf(pdf_path) chunks = create_text_chunks(text) index, embeddings, chunk_texts = create_faiss_index(chunks) st.success("PDF processed! Now you can ask questions.") # User Query query = st.text_input("Ask a question about the PDF:") if st.button("Get Answer"): if query: # Retrieve top chunks relevant_chunks = retrieve_similar_chunks(query, index, embeddings, chunk_texts) context = "\n\n".join(relevant_chunks) # Query Groq API response = query_groq_api(query, context) st.subheader("Answer:") st.write(response) else: st.warning("Please enter a question.")