import streamlit as st from streamlit_option_menu import option_menu import fitz # PyMuPDF from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS from langchain_community.llms import HuggingFaceHub from langchain.chains import RetrievalQA import tempfile import os import base64 # Page configuration st.set_page_config( page_title="PDF Study Assistant", page_icon="📚", layout="wide", initial_sidebar_state="collapsed" ) # Custom CSS for colorful design st.markdown(""" """, unsafe_allow_html=True) # Initialize session state if 'pdf_processed' not in st.session_state: st.session_state.pdf_processed = False if 'qa_chain' not in st.session_state: st.session_state.qa_chain = None if 'pages' not in st.session_state: st.session_state.pages = [] # Load models with caching @st.cache_resource def load_embedding_model(): return HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") @st.cache_resource def load_qa_model(): return HuggingFaceHub( repo_id="google/flan-t5-xxl", model_kwargs={"temperature": 0.5, "max_length": 512}, huggingfacehub_api_token=os.getenv("HF_API_KEY") ) def process_pdf(pdf_file): """Extract text from PDF and create vector store""" with st.spinner("📖 Reading PDF..."): doc = fitz.open(stream=pdf_file.read(), filetype="pdf") text = "" st.session_state.pages = [] for page in doc: text += page.get_text() st.session_state.pages.append(page.get_text()) with st.spinner("🔍 Processing text..."): text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text) embeddings = load_embedding_model() vector_store = FAISS.from_texts(chunks, embeddings) qa_model = load_qa_model() st.session_state.qa_chain = RetrievalQA.from_chain_type( llm=qa_model, chain_type="stuff", retriever=vector_store.as_retriever(search_kwargs={"k": 3}), return_source_documents=True ) st.session_state.pdf_processed = True st.success("✅ PDF processed successfully!") def generate_qa_for_chapter(start_page, end_page): """Generate Q&A for specific chapter pages""" if start_page < 1 or end_page > len(st.session_state.pages) or start_page > end_page: st.error("Invalid page range") return [] chapter_text = "\n".join(st.session_state.pages[start_page-1:end_page]) text_splitter = RecursiveCharacterTextSplitter( chunk_size=800, chunk_overlap=100, length_function=len ) chunks = text_splitter.split_text(chapter_text) qa_pairs = [] qa_model = load_qa_model() with st.spinner(f"🧠 Generating Q&A for pages {start_page}-{end_page}..."): for i, chunk in enumerate(chunks): if i % 2 == 0: # Generate question prompt = f"Generate a study question based on: {chunk[:500]}" question = qa_model(prompt)[:120] + "?" else: # Generate answer prompt = f"Answer the question: {qa_pairs[-1][0]} using context: {chunk[:500]}" answer = qa_model(prompt) qa_pairs[-1] = (qa_pairs[-1][0], answer) return qa_pairs # App header st.markdown("