Spaces:
Sleeping
Sleeping
File size: 7,651 Bytes
b2b5a52 c6655cf f91b527 c6655cf f91b527 c6655cf f91b527 c6655cf f91b527 c6655cf f91b527 c6655cf 60c307a c6655cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
from sklearn.ensemble import IsolationForest
import io
from fpdf import FPDF
import requests
import PyPDF2
import tempfile
import os
st.set_page_config(page_title="π WiFi Anomaly Detection", layout="wide")
# -------------------------------
# WiFi Anomaly Detection Overview
# -------------------------------
st.title("π WiFi Anomaly Detection Overview")
st.markdown("""
**Detect anomalies in Public Wi-Fi Systems**:
Identify suspicious spikes that may indicate hacking attempts, ensuring proactive maintenance and reliable network performance.
""")
st.markdown("### How it Works:")
st.markdown("""
- **Data Collection:** Upload network logs in CSV, TXT, or PDF format.
- **Anomaly Detection:** Use AI algorithms to automatically spot unusual patterns.
- **Visualization:** Review data in 2D and 3D interactive charts.
- **Report Generation:** Download a comprehensive PDF report with summaries and visuals.
""")
# -------------------------------
# Sidebar: File Upload & Options
# -------------------------------
st.sidebar.header("π Upload Data File")
uploaded_file = st.sidebar.file_uploader("Choose a file", type=["csv", "txt", "pdf"])
st.sidebar.markdown("---")
model_option = st.sidebar.radio("Select Anomaly Detection Model", ("Local Model", "Groq API"))
# -------------------------------
# Helper Functions
# -------------------------------
def load_data(uploaded_file):
file_type = uploaded_file.name.split('.')[-1].lower()
if file_type == 'csv':
try:
df = pd.read_csv(uploaded_file)
return df, "csv"
except Exception as e:
st.error("Error reading CSV file.")
return None, None
elif file_type == 'txt':
try:
# Try comma separated first; if not, try whitespace separation
try:
df = pd.read_csv(uploaded_file, sep=",")
except:
df = pd.read_csv(uploaded_file, sep="\s+")
return df, "txt"
except Exception as e:
st.error("Error reading TXT file.")
return None, None
elif file_type == 'pdf':
try:
pdf_reader = PyPDF2.PdfReader(uploaded_file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
# For demonstration, create a DataFrame with one text column
df = pd.DataFrame({"text": [text]})
return df, "pdf"
except Exception as e:
st.error("Error reading PDF file.")
return None, None
else:
st.error("Unsupported file type.")
return None, None
def run_local_anomaly_detection(df):
# Use IsolationForest for numeric data anomaly detection.
numeric_cols = df.select_dtypes(include=[np.number]).columns
if len(numeric_cols) < 2:
st.warning("Not enough numeric columns for anomaly detection. (Need at least 2 numeric columns)")
return df
X = df[numeric_cols].fillna(0)
model = IsolationForest(contamination=0.1, random_state=42)
model.fit(X)
# Model returns -1 for anomalies, 1 for normal records
df['anomaly'] = model.predict(X)
df['anomaly_flag'] = df['anomaly'].apply(lambda x: "π¨ Anomaly" if x == -1 else "β
Normal")
return df
def call_groq_api(df):
# ----- Dummy Groq API integration -----
# In a real implementation, you would send your data via a POST request like:
# response = requests.post("https://api.groq.ai/detect", json=df.to_dict(orient="records"))
# and then process the JSON response.
# For demo purposes, we simply call the local model.
# ----------------------------------------
df = run_local_anomaly_detection(df)
return df
def generate_plots(df):
# Create 2D and 3D scatter plots based on the first numeric columns
numeric_cols = df.select_dtypes(include=[np.number]).columns
fig2d, fig3d = None, None
if len(numeric_cols) >= 2:
fig2d = px.scatter(df, x=numeric_cols[0], y=numeric_cols[1],
color='anomaly_flag',
title="π 2D Anomaly Detection Plot")
if len(numeric_cols) >= 3:
fig3d = px.scatter_3d(df, x=numeric_cols[0], y=numeric_cols[1], z=numeric_cols[2],
color='anomaly_flag',
title="π 3D Anomaly Detection Plot")
return fig2d, fig3d
def generate_pdf_report(summary_text, fig2d, fig3d):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", 'B', 16)
pdf.cell(0, 10, "WiFi Anomaly Detection Report", ln=True)
pdf.ln(10)
pdf.set_font("Arial", size=12)
pdf.multi_cell(0, 10, summary_text)
pdf.ln(10)
# Save figures as temporary image files using Kaleido (Plotly's image export engine)
image_files = []
if fig2d is not None:
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmpfile:
fig2d.write_image(tmpfile.name)
image_files.append(tmpfile.name)
if fig3d is not None:
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmpfile:
fig3d.write_image(tmpfile.name)
image_files.append(tmpfile.name)
# Add each image to the PDF
for image in image_files:
pdf.image(image, w=pdf.w - 40)
pdf.ln(10)
# Clean up temporary image files
for image in image_files:
os.remove(image)
pdf_output = io.BytesIO()
pdf.output(pdf_output)
pdf_data = pdf_output.getvalue()
pdf_output.close()
return pdf_data
# -------------------------------
# Main Workflow
# -------------------------------
if uploaded_file is not None:
df, file_type = load_data(uploaded_file)
if df is not None:
if file_type == "pdf":
st.subheader("π Extracted Text from PDF:")
st.text_area("PDF Content", df["text"][0], height=300)
else:
st.subheader("π Data Preview:")
st.dataframe(df.head())
if st.button("βΆοΈ Check Data Visualization & Summary"):
if file_type in ["csv", "txt"]:
# Run the selected anomaly detection method
if model_option == "Local Model":
df_result = run_local_anomaly_detection(df)
else:
df_result = call_groq_api(df)
st.subheader("π Anomaly Detection Summary:")
anomaly_count = (df_result['anomaly'] == -1).sum()
total_count = df_result.shape[0]
summary_text = f"Total records: {total_count}\nDetected anomalies: {anomaly_count}"
st.text(summary_text)
st.dataframe(df_result.head())
fig2d, fig3d = generate_plots(df_result)
if fig2d:
st.plotly_chart(fig2d, use_container_width=True)
if fig3d:
st.plotly_chart(fig3d, use_container_width=True)
if st.button("β¬οΈ Download Report as PDF"):
pdf_data = generate_pdf_report(summary_text, fig2d, fig3d)
st.download_button("Download PDF", data=pdf_data,
file_name="wifi_anomaly_report.pdf",
mime="application/pdf")
else:
st.info("Anomaly detection is available only for CSV/TXT data.")
else:
st.info("Please upload a CSV, TXT, or PDF file to begin. π")
|