Spaces:
Sleeping
Sleeping
File size: 8,911 Bytes
b2b5a52 c6655cf deefe4d c6655cf deefe4d c6655cf deefe4d c6655cf deefe4d c6655cf deefe4d c6655cf deefe4d c6655cf deefe4d c6655cf f91b527 c6655cf f91b527 c6655cf f91b527 c6655cf f91b527 deefe4d c6655cf deefe4d c6655cf deefe4d c6655cf deefe4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
from sklearn.ensemble import IsolationForest
import io
from fpdf import FPDF
import requests
import PyPDF2
import tempfile
import os
# -------------------------------
# Page Configuration and Header
# -------------------------------
st.set_page_config(page_title="π WiFi Anomaly Detection", layout="wide")
st.title("π WiFi Anomaly Detection System")
st.markdown("""
> "Innovation distinguishes between a leader and a follower." β *Steve Jobs*
> "The future depends on what you do today." β *Mahatma Gandhi*
""")
st.markdown("""
Welcome to the WiFi Anomaly Detection System. This application uses AI to proactively detect abnormal behavior in Public Wi-Fi systems, identifying suspicious spikes that may indicate hacking attempts. Letβs build a more secure network, one anomaly at a time!
""")
# -------------------------------
# Define Helper Functions
# -------------------------------
def load_data(uploaded_file):
file_type = uploaded_file.name.split('.')[-1].lower()
if file_type == 'csv':
try:
df = pd.read_csv(uploaded_file)
return df, "csv"
except Exception as e:
st.error("Error reading CSV file.")
return None, None
elif file_type == 'txt':
try:
try:
df = pd.read_csv(uploaded_file, sep=",")
except:
df = pd.read_csv(uploaded_file, sep="\s+")
return df, "txt"
except Exception as e:
st.error("Error reading TXT file.")
return None, None
elif file_type == 'pdf':
try:
pdf_reader = PyPDF2.PdfReader(uploaded_file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
df = pd.DataFrame({"text": [text]})
return df, "pdf"
except Exception as e:
st.error("Error reading PDF file.")
return None, None
else:
st.error("Unsupported file type.")
return None, None
def run_local_anomaly_detection(df):
# Use IsolationForest for numeric data anomaly detection.
numeric_cols = df.select_dtypes(include=[np.number]).columns
if len(numeric_cols) < 2:
st.warning("Not enough numeric columns for anomaly detection. (Need at least 2 numeric columns)")
return df
X = df[numeric_cols].fillna(0)
model = IsolationForest(contamination=0.1, random_state=42)
model.fit(X)
df['anomaly'] = model.predict(X)
df['anomaly_flag'] = df['anomaly'].apply(lambda x: "π¨ Anomaly" if x == -1 else "β
Normal")
return df
def call_groq_api(df):
# ----- Dummy Groq API integration -----
# Replace this dummy call with an actual Groq API call as needed.
df = run_local_anomaly_detection(df)
return df
def generate_plots(df):
# Generate 2D and 3D plots from the first numeric columns
numeric_cols = df.select_dtypes(include=[np.number]).columns
fig2d, fig3d = None, None
if len(numeric_cols) >= 2:
fig2d = px.scatter(df, x=numeric_cols[0], y=numeric_cols[1],
color='anomaly_flag',
title="π 2D Anomaly Detection Plot")
if len(numeric_cols) >= 3:
fig3d = px.scatter_3d(df, x=numeric_cols[0], y=numeric_cols[1], z=numeric_cols[2],
color='anomaly_flag',
title="π 3D Anomaly Detection Plot")
return fig2d, fig3d
def generate_pdf_report(summary_text, fig2d, fig3d):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", 'B', 16)
pdf.cell(0, 10, "WiFi Anomaly Detection Report", ln=True)
pdf.ln(10)
pdf.set_font("Arial", size=12)
pdf.multi_cell(0, 10, summary_text)
pdf.ln(10)
# Save figures as temporary image files using Kaleido (Plotly's image export engine)
image_files = []
if fig2d is not None:
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmpfile:
fig2d.write_image(tmpfile.name)
image_files.append(tmpfile.name)
if fig3d is not None:
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmpfile:
fig3d.write_image(tmpfile.name)
image_files.append(tmpfile.name)
# Add each image to the PDF
for image in image_files:
pdf.image(image, w=pdf.w - 40)
pdf.ln(10)
# Clean up temporary image files
for image in image_files:
os.remove(image)
pdf_data = pdf.output(dest="S").encode("latin1")
return pdf_data
# -------------------------------
# Initialize Session State Variables
# -------------------------------
if "step" not in st.session_state:
st.session_state.step = "upload"
if "df" not in st.session_state:
st.session_state.df = None
if "df_processed" not in st.session_state:
st.session_state.df_processed = None
if "fig2d" not in st.session_state:
st.session_state.fig2d = None
if "fig3d" not in st.session_state:
st.session_state.fig3d = None
if "summary_text" not in st.session_state:
st.session_state.summary_text = ""
# -------------------------------
# Sidebar: Step Buttons
# -------------------------------
st.sidebar.title("π§ Application Steps")
if st.sidebar.button("π Upload File"):
st.session_state.step = "upload"
if st.sidebar.button("π Data Visualization"):
st.session_state.step = "viz"
if st.sidebar.button("π Statistic Analysis"):
st.session_state.step = "stats"
if st.sidebar.button("β¬οΈ Download Report"):
st.session_state.step = "download"
# -------------------------------
# Main Workflow Based on Step
# -------------------------------
if st.session_state.step == "upload":
st.subheader("Step 1: Upload Your Data File")
st.markdown("Please upload a CSV, TXT, or PDF file with network data. The expected columns for CSV/TXT files are:")
st.code("['traffic', 'latency', 'packet_loss']", language="python")
uploaded_file = st.file_uploader("Choose a file", type=["csv", "txt", "pdf"])
if uploaded_file is not None:
df, file_type = load_data(uploaded_file)
if df is not None:
st.session_state.df = df
st.success("File uploaded and processed successfully!")
if file_type == "pdf":
st.subheader("Extracted Text from PDF:")
st.text_area("PDF Content", df["text"][0], height=300)
else:
st.subheader("Data Preview:")
st.dataframe(df.head())
else:
st.info("Awaiting file upload. π")
elif st.session_state.step == "viz":
st.subheader("Step 2: Data Visualization")
if st.session_state.df is None:
st.error("Please upload a file first in the 'Upload File' step.")
else:
# Process the data if not already done
if st.session_state.df_processed is None:
# Here, you can choose between the local model or Groq API; we use the local model for demo.
st.session_state.df_processed = run_local_anomaly_detection(st.session_state.df)
fig2d, fig3d = generate_plots(st.session_state.df_processed)
st.session_state.fig2d = fig2d
st.session_state.fig3d = fig3d
if fig2d:
st.plotly_chart(fig2d, use_container_width=True)
if fig3d:
st.plotly_chart(fig3d, use_container_width=True)
elif st.session_state.step == "stats":
st.subheader("Step 3: Statistic Analysis")
if st.session_state.df_processed is None:
st.error("Data has not been processed yet. Please complete the Data Visualization step first.")
else:
df_result = st.session_state.df_processed
anomaly_count = (df_result['anomaly'] == -1).sum()
total_count = df_result.shape[0]
st.session_state.summary_text = f"Total records: {total_count}\nDetected anomalies: {anomaly_count}"
st.markdown("**Anomaly Detection Summary:**")
st.text(st.session_state.summary_text)
st.markdown("**Detailed Data:**")
st.dataframe(df_result.head())
st.markdown("**Descriptive Statistics:**")
st.dataframe(df_result.describe())
elif st.session_state.step == "download":
st.subheader("Step 4: Download PDF Report")
if st.session_state.df_processed is None or (st.session_state.fig2d is None and st.session_state.fig3d is None):
st.error("Please complete the previous steps (Upload, Visualization, Statistic Analysis) before downloading the report.")
else:
pdf_data = generate_pdf_report(st.session_state.summary_text, st.session_state.fig2d, st.session_state.fig3d)
st.download_button("β¬οΈ Download PDF Report", data=pdf_data,
file_name="wifi_anomaly_report.pdf",
mime="application/pdf")
|