Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,36 +4,16 @@ import numpy as np
|
|
4 |
import tensorflow as tf
|
5 |
from sklearn.preprocessing import MinMaxScaler
|
6 |
import plotly.express as px
|
|
|
7 |
from groq import Groq
|
8 |
-
import io
|
9 |
|
10 |
# Initialize session state
|
11 |
if 'model' not in st.session_state:
|
12 |
st.session_state.model = None
|
13 |
if 'threshold' not in st.session_state:
|
14 |
st.session_state.threshold = None
|
15 |
-
if 'data' not in st.session_state:
|
16 |
-
st.session_state.data = None
|
17 |
|
18 |
-
#
|
19 |
-
def generate_sample_data():
|
20 |
-
time_steps = 500
|
21 |
-
base = np.arange(time_steps)
|
22 |
-
data = pd.DataFrame({
|
23 |
-
'timestamp': pd.date_range(start='2024-01-01', periods=time_steps, freq='H'),
|
24 |
-
'device_count': np.random.poisson(50, time_steps),
|
25 |
-
'connection_attempts': np.random.poisson(30, time_steps),
|
26 |
-
'packet_loss': np.random.uniform(0.1, 2.0, time_steps),
|
27 |
-
'latency': np.random.uniform(10, 100, time_steps)
|
28 |
-
})
|
29 |
-
|
30 |
-
# Add anomalies
|
31 |
-
anomaly_indices = np.random.choice(time_steps, 10, replace=False)
|
32 |
-
data.loc[anomaly_indices, 'connection_attempts'] *= 10
|
33 |
-
data.loc[anomaly_indices, 'latency'] *= 5
|
34 |
-
return data
|
35 |
-
|
36 |
-
# Autoencoder model
|
37 |
def build_autoencoder(input_dim):
|
38 |
model = tf.keras.Sequential([
|
39 |
tf.keras.layers.Dense(64, activation='relu', input_shape=(input_dim,)),
|
@@ -51,96 +31,74 @@ groq_api_key = st.sidebar.text_input("Groq API Key (optional)", type="password")
|
|
51 |
|
52 |
# Main interface
|
53 |
st.title("🛰️ AI Network Anomaly Detector")
|
54 |
-
st.write("Upload network data (CSV)
|
55 |
|
56 |
-
#
|
57 |
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
st.error(f"Error reading file: {str(e)}")
|
63 |
else:
|
64 |
-
st.
|
65 |
-
|
66 |
|
67 |
# Preprocessing
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
data_scaled = scaler.fit_transform(st.session_state.data[features])
|
72 |
|
73 |
-
# Model training
|
74 |
-
if st.session_state.model is None
|
75 |
with st.spinner("Training model..."):
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
st.session_state.threshold = np.percentile(mse, 95)
|
89 |
-
st.success("Model trained successfully!")
|
90 |
-
except Exception as e:
|
91 |
-
st.error(f"Training error: {str(e)}")
|
92 |
|
93 |
# Anomaly detection
|
94 |
if st.session_state.model and st.button("Detect Anomalies"):
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
Provide a technical analysis and recommendations in bullet points."""
|
123 |
-
}]
|
124 |
-
)
|
125 |
-
st.subheader("AI Analysis")
|
126 |
-
st.write(response.choices[0].message.content)
|
127 |
-
except Exception as e:
|
128 |
-
st.error(f"Groq API Error: {str(e)}")
|
129 |
-
else:
|
130 |
-
st.warning("Groq API key not provided - using basic detection")
|
131 |
-
|
132 |
-
# Download report
|
133 |
-
report = st.session_state.data[anomalies]
|
134 |
-
csv = report.to_csv(index=False).encode('utf-8')
|
135 |
-
st.download_button(
|
136 |
-
label="Download Anomaly Report",
|
137 |
-
data=csv,
|
138 |
-
file_name='anomaly_report.csv',
|
139 |
-
mime='text/csv'
|
140 |
-
)
|
141 |
-
except Exception as e:
|
142 |
-
st.error(f"Detection error: {str(e)}")
|
143 |
|
144 |
-
#
|
145 |
-
if st.
|
146 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import tensorflow as tf
|
5 |
from sklearn.preprocessing import MinMaxScaler
|
6 |
import plotly.express as px
|
7 |
+
import os
|
8 |
from groq import Groq
|
|
|
9 |
|
10 |
# Initialize session state
|
11 |
if 'model' not in st.session_state:
|
12 |
st.session_state.model = None
|
13 |
if 'threshold' not in st.session_state:
|
14 |
st.session_state.threshold = None
|
|
|
|
|
15 |
|
16 |
+
# Autoencoder model definition
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
def build_autoencoder(input_dim):
|
18 |
model = tf.keras.Sequential([
|
19 |
tf.keras.layers.Dense(64, activation='relu', input_shape=(input_dim,)),
|
|
|
31 |
|
32 |
# Main interface
|
33 |
st.title("🛰️ AI Network Anomaly Detector")
|
34 |
+
st.write("Upload your network data (CSV) to detect anomalies")
|
35 |
|
36 |
+
# File uploader
|
37 |
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
38 |
+
|
39 |
+
# Load or generate sample data
|
40 |
+
if uploaded_file is not None:
|
41 |
+
data = pd.read_csv(uploaded_file)
|
|
|
42 |
else:
|
43 |
+
st.info("Using sample data. Upload a file to use your own dataset.")
|
44 |
+
data = pd.read_csv("sample_wifi_data.csv") # You should provide this sample file
|
45 |
|
46 |
# Preprocessing
|
47 |
+
features = ['device_count', 'connection_attempts', 'packet_loss', 'latency']
|
48 |
+
scaler = MinMaxScaler()
|
49 |
+
data_scaled = scaler.fit_transform(data[features])
|
|
|
50 |
|
51 |
+
# Model training/fine-tuning
|
52 |
+
if fine_tune or st.session_state.model is None:
|
53 |
with st.spinner("Training model..."):
|
54 |
+
autoencoder = build_autoencoder(data_scaled.shape[1])
|
55 |
+
autoencoder.fit(data_scaled, data_scaled,
|
56 |
+
epochs=100,
|
57 |
+
batch_size=32,
|
58 |
+
verbose=0,
|
59 |
+
validation_split=0.1)
|
60 |
+
st.session_state.model = autoencoder
|
61 |
+
|
62 |
+
# Calculate threshold
|
63 |
+
reconstructions = autoencoder.predict(data_scaled)
|
64 |
+
mse = np.mean(np.power(data_scaled - reconstructions, 2), axis=1)
|
65 |
+
st.session_state.threshold = np.percentile(mse, 95)
|
|
|
|
|
|
|
|
|
66 |
|
67 |
# Anomaly detection
|
68 |
if st.session_state.model and st.button("Detect Anomalies"):
|
69 |
+
reconstructions = st.session_state.model.predict(data_scaled)
|
70 |
+
mse = np.mean(np.power(data_scaled - reconstructions, 2), axis=1)
|
71 |
+
anomalies = mse > st.session_state.threshold
|
72 |
+
|
73 |
+
# Visualization
|
74 |
+
fig = px.line(data, x=data.index, y='connection_attempts',
|
75 |
+
title='Network Traffic with Anomalies')
|
76 |
+
fig.add_scatter(x=data[anomalies].index, y=data[anomalies]['connection_attempts'],
|
77 |
+
mode='markers', name='Anomalies')
|
78 |
+
st.plotly_chart(fig)
|
79 |
+
|
80 |
+
# Generate alert with Groq/Llama3
|
81 |
+
if groq_api_key:
|
82 |
+
try:
|
83 |
+
client = Groq(api_key=groq_api_key)
|
84 |
+
response = client.chat.completions.create(
|
85 |
+
model="llama3-70b-8192",
|
86 |
+
messages=[{
|
87 |
+
"role": "user",
|
88 |
+
"content": f"Generate a network security alert for {sum(anomalies)} anomalies detected. Max connection attempts: {data['connection_attempts'].max()}"
|
89 |
+
}]
|
90 |
+
)
|
91 |
+
st.warning(response.choices[0].message.content)
|
92 |
+
except Exception as e:
|
93 |
+
st.error(f"Groq API Error: {str(e)}")
|
94 |
+
else:
|
95 |
+
st.warning(f"Detected {sum(anomalies)} anomalies! Consider adding Groq API key for detailed analysis.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
# Download button for results
|
98 |
+
if st.session_state.threshold:
|
99 |
+
st.download_button(
|
100 |
+
label="Download Anomaly Report",
|
101 |
+
data=data[anomalies].to_csv().encode('utf-8'),
|
102 |
+
file_name='anomalies_report.csv',
|
103 |
+
mime='text/csv'
|
104 |
+
)
|