Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,39 +4,36 @@ import torch
|
|
4 |
import torch.nn as nn
|
5 |
from torchvision import transforms
|
6 |
import os
|
|
|
7 |
from groq import Groq
|
8 |
|
9 |
-
#
|
|
|
|
|
|
|
10 |
st.set_page_config(page_title="Leaves Disease Detection", layout="wide")
|
11 |
st.title("πΏ Leaves Disease Detection")
|
12 |
st.write("Upload an image of a plant leaf to check for diseases and get treatment recommendations.")
|
13 |
|
14 |
# Initialize Groq client
|
15 |
try:
|
16 |
-
|
|
|
17 |
except Exception as e:
|
18 |
st.error(f"Failed to initialize Groq client: {str(e)}")
|
19 |
client = None
|
20 |
|
21 |
-
# Simple CNN model
|
22 |
class PlantDiseaseModel(nn.Module):
|
23 |
-
def __init__(self, num_classes=
|
24 |
super(PlantDiseaseModel, self).__init__()
|
25 |
self.features = nn.Sequential(
|
26 |
-
nn.Conv2d(3, 32,
|
27 |
-
nn.ReLU(),
|
28 |
-
nn.MaxPool2d(
|
29 |
-
nn.Conv2d(32, 64, kernel_size=3, padding=1),
|
30 |
-
nn.ReLU(),
|
31 |
-
nn.MaxPool2d(kernel_size=2, stride=2),
|
32 |
-
nn.Conv2d(64, 128, kernel_size=3, padding=1),
|
33 |
-
nn.ReLU(),
|
34 |
-
nn.MaxPool2d(kernel_size=2, stride=2),
|
35 |
)
|
36 |
self.classifier = nn.Sequential(
|
37 |
-
nn.Linear(128 * 32 * 32, 512),
|
38 |
-
nn.ReLU(),
|
39 |
-
nn.Dropout(0.5),
|
40 |
nn.Linear(512, num_classes)
|
41 |
)
|
42 |
|
@@ -46,7 +43,7 @@ class PlantDiseaseModel(nn.Module):
|
|
46 |
x = self.classifier(x)
|
47 |
return x
|
48 |
|
49 |
-
#
|
50 |
@st.cache_resource
|
51 |
def load_model():
|
52 |
model = PlantDiseaseModel()
|
@@ -55,16 +52,30 @@ def load_model():
|
|
55 |
|
56 |
model = load_model()
|
57 |
|
58 |
-
#
|
59 |
def preprocess_image(image):
|
60 |
transform = transforms.Compose([
|
61 |
transforms.Resize((256, 256)),
|
62 |
transforms.ToTensor(),
|
63 |
-
transforms.Normalize(
|
|
|
64 |
])
|
65 |
return transform(image).unsqueeze(0)
|
66 |
|
67 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
def classify_disease(image):
|
69 |
try:
|
70 |
img_tensor = preprocess_image(image)
|
@@ -72,99 +83,69 @@ def classify_disease(image):
|
|
72 |
outputs = model(img_tensor)
|
73 |
_, predicted = torch.max(outputs, 1)
|
74 |
class_idx = predicted.item()
|
75 |
-
|
76 |
-
disease_classes = [
|
77 |
-
"Healthy", "Apple Scab", "Apple Black Rot", "Apple Cedar Rust",
|
78 |
-
"Cherry Powdery Mildew", "Corn Gray Leaf Spot", "Corn Common Rust",
|
79 |
-
"Grape Black Rot", "Grape Esca", "Grape Leaf Blight",
|
80 |
-
"Orange Huanglongbing", "Peach Bacterial Spot", "Pepper Bacterial Spot",
|
81 |
-
"Potato Early Blight", "Potato Late Blight", "Raspberry Healthy",
|
82 |
-
"Soybean Healthy", "Squash Powdery Mildew", "Strawberry Leaf Scorch",
|
83 |
-
"Tomato Bacterial Spot", "Tomato Early Blight", "Tomato Late Blight",
|
84 |
-
"Tomato Leaf Mold", "Tomato Septoria Leaf Spot", "Tomato Spider Mites",
|
85 |
-
"Tomato Target Spot", "Tomato Yellow Leaf Curl Virus", "Tomato Mosaic Virus"
|
86 |
-
]
|
87 |
-
|
88 |
-
disease_name = disease_classes[class_idx % len(disease_classes)]
|
89 |
-
return disease_name
|
90 |
except Exception as e:
|
91 |
st.error(f"Error during classification: {str(e)}")
|
92 |
return "Unknown"
|
93 |
|
94 |
-
#
|
95 |
def get_disease_info(disease_name):
|
96 |
if not client:
|
97 |
return {
|
98 |
-
"description": "API connection not available. Please check your
|
99 |
-
"treatment": "",
|
100 |
-
"prevention": ""
|
101 |
}
|
102 |
-
|
103 |
try:
|
104 |
if disease_name.lower() == "healthy":
|
105 |
return {
|
106 |
-
"description": "The plant appears to be healthy
|
107 |
-
"treatment": "No treatment needed. Continue with regular plant care practices.",
|
108 |
-
"prevention": "Maintain good growing conditions, proper watering, and regular monitoring."
|
109 |
}
|
110 |
-
|
111 |
response = client.chat.completions.create(
|
112 |
messages=[
|
113 |
{"role": "system", "content": "You are a plant pathologist assistant."},
|
114 |
-
{"role": "user", "content": f"Describe {disease_name} in plants
|
115 |
],
|
116 |
model="mixtral-8x7b-32768",
|
117 |
temperature=0.3,
|
118 |
max_tokens=1024
|
119 |
)
|
120 |
-
|
121 |
return {"description": response.choices[0].message.content}
|
122 |
except Exception as e:
|
123 |
st.error(f"Error fetching disease information: {str(e)}")
|
124 |
return {
|
125 |
-
"description": "
|
126 |
-
"treatment": "",
|
127 |
-
"prevention": ""
|
128 |
}
|
129 |
|
130 |
-
# Main app
|
131 |
def main():
|
132 |
uploaded_file = st.file_uploader("Upload a leaf image", type=["jpg", "jpeg", "png"])
|
133 |
|
134 |
-
if uploaded_file
|
135 |
try:
|
136 |
-
image = Image.open(uploaded_file)
|
137 |
st.image(image, caption="Uploaded Leaf Image", use_column_width=True)
|
138 |
-
|
139 |
-
if st.button("Predict Disease"):
|
140 |
with st.spinner("Analyzing the leaf..."):
|
141 |
disease_name = classify_disease(image)
|
142 |
-
|
143 |
-
|
144 |
-
st.subheader("
|
145 |
col1, col2 = st.columns(2)
|
146 |
-
|
147 |
with col1:
|
148 |
status = "Healthy" if disease_name.lower() == "healthy" else "Diseased"
|
149 |
st.markdown(f"**Status:** {status}")
|
150 |
-
st.markdown(f"**Detected
|
151 |
-
|
152 |
with col2:
|
153 |
-
if disease_name.lower()
|
154 |
-
st.
|
155 |
else:
|
156 |
-
st.
|
157 |
-
|
158 |
-
st.subheader("
|
159 |
-
st.write(
|
160 |
-
|
161 |
-
st.subheader("π Real-world Summary")
|
162 |
-
if disease_name.lower() == "healthy":
|
163 |
-
st.write("The analysis indicates a healthy plant leaf with no signs of disease.")
|
164 |
-
else:
|
165 |
-
st.write(f"The analysis detected {disease_name}. Early detection and proper treatment are crucial.")
|
166 |
except Exception as e:
|
167 |
st.error(f"Error processing image: {str(e)}")
|
168 |
|
169 |
if __name__ == "__main__":
|
170 |
-
main()
|
|
|
4 |
import torch.nn as nn
|
5 |
from torchvision import transforms
|
6 |
import os
|
7 |
+
from dotenv import load_dotenv
|
8 |
from groq import Groq
|
9 |
|
10 |
+
# Load environment variables
|
11 |
+
load_dotenv()
|
12 |
+
|
13 |
+
# Streamlit UI setup
|
14 |
st.set_page_config(page_title="Leaves Disease Detection", layout="wide")
|
15 |
st.title("πΏ Leaves Disease Detection")
|
16 |
st.write("Upload an image of a plant leaf to check for diseases and get treatment recommendations.")
|
17 |
|
18 |
# Initialize Groq client
|
19 |
try:
|
20 |
+
api_key = os.getenv("GROQ_API_KEY")
|
21 |
+
client = Groq(api_key=api_key)
|
22 |
except Exception as e:
|
23 |
st.error(f"Failed to initialize Groq client: {str(e)}")
|
24 |
client = None
|
25 |
|
26 |
+
# Simple CNN model (dummy architecture)
|
27 |
class PlantDiseaseModel(nn.Module):
|
28 |
+
def __init__(self, num_classes=28):
|
29 |
super(PlantDiseaseModel, self).__init__()
|
30 |
self.features = nn.Sequential(
|
31 |
+
nn.Conv2d(3, 32, 3, padding=1), nn.ReLU(), nn.MaxPool2d(2, 2),
|
32 |
+
nn.Conv2d(32, 64, 3, padding=1), nn.ReLU(), nn.MaxPool2d(2, 2),
|
33 |
+
nn.Conv2d(64, 128, 3, padding=1), nn.ReLU(), nn.MaxPool2d(2, 2),
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
)
|
35 |
self.classifier = nn.Sequential(
|
36 |
+
nn.Linear(128 * 32 * 32, 512), nn.ReLU(), nn.Dropout(0.5),
|
|
|
|
|
37 |
nn.Linear(512, num_classes)
|
38 |
)
|
39 |
|
|
|
43 |
x = self.classifier(x)
|
44 |
return x
|
45 |
|
46 |
+
# Cache the model
|
47 |
@st.cache_resource
|
48 |
def load_model():
|
49 |
model = PlantDiseaseModel()
|
|
|
52 |
|
53 |
model = load_model()
|
54 |
|
55 |
+
# Preprocess image
|
56 |
def preprocess_image(image):
|
57 |
transform = transforms.Compose([
|
58 |
transforms.Resize((256, 256)),
|
59 |
transforms.ToTensor(),
|
60 |
+
transforms.Normalize([0.485, 0.456, 0.406],
|
61 |
+
[0.229, 0.224, 0.225]),
|
62 |
])
|
63 |
return transform(image).unsqueeze(0)
|
64 |
|
65 |
+
# Dummy disease classes
|
66 |
+
disease_classes = [
|
67 |
+
"Healthy", "Apple Scab", "Apple Black Rot", "Apple Cedar Rust",
|
68 |
+
"Cherry Powdery Mildew", "Corn Gray Leaf Spot", "Corn Common Rust",
|
69 |
+
"Grape Black Rot", "Grape Esca", "Grape Leaf Blight",
|
70 |
+
"Orange Huanglongbing", "Peach Bacterial Spot", "Pepper Bacterial Spot",
|
71 |
+
"Potato Early Blight", "Potato Late Blight", "Raspberry Healthy",
|
72 |
+
"Soybean Healthy", "Squash Powdery Mildew", "Strawberry Leaf Scorch",
|
73 |
+
"Tomato Bacterial Spot", "Tomato Early Blight", "Tomato Late Blight",
|
74 |
+
"Tomato Leaf Mold", "Tomato Septoria Leaf Spot", "Tomato Spider Mites",
|
75 |
+
"Tomato Target Spot", "Tomato Yellow Leaf Curl Virus", "Tomato Mosaic Virus"
|
76 |
+
]
|
77 |
+
|
78 |
+
# Classify the image
|
79 |
def classify_disease(image):
|
80 |
try:
|
81 |
img_tensor = preprocess_image(image)
|
|
|
83 |
outputs = model(img_tensor)
|
84 |
_, predicted = torch.max(outputs, 1)
|
85 |
class_idx = predicted.item()
|
86 |
+
return disease_classes[class_idx % len(disease_classes)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
except Exception as e:
|
88 |
st.error(f"Error during classification: {str(e)}")
|
89 |
return "Unknown"
|
90 |
|
91 |
+
# Fetch info from Groq API
|
92 |
def get_disease_info(disease_name):
|
93 |
if not client:
|
94 |
return {
|
95 |
+
"description": "API connection not available. Please check your GROQ_API_KEY.",
|
|
|
|
|
96 |
}
|
|
|
97 |
try:
|
98 |
if disease_name.lower() == "healthy":
|
99 |
return {
|
100 |
+
"description": "The plant appears to be healthy. No treatment needed.",
|
|
|
|
|
101 |
}
|
102 |
+
|
103 |
response = client.chat.completions.create(
|
104 |
messages=[
|
105 |
{"role": "system", "content": "You are a plant pathologist assistant."},
|
106 |
+
{"role": "user", "content": f"Describe {disease_name} in plants including symptoms, treatment, and prevention."}
|
107 |
],
|
108 |
model="mixtral-8x7b-32768",
|
109 |
temperature=0.3,
|
110 |
max_tokens=1024
|
111 |
)
|
|
|
112 |
return {"description": response.choices[0].message.content}
|
113 |
except Exception as e:
|
114 |
st.error(f"Error fetching disease information: {str(e)}")
|
115 |
return {
|
116 |
+
"description": "Unable to fetch disease info. Please try again later.",
|
|
|
|
|
117 |
}
|
118 |
|
119 |
+
# Main app function
|
120 |
def main():
|
121 |
uploaded_file = st.file_uploader("Upload a leaf image", type=["jpg", "jpeg", "png"])
|
122 |
|
123 |
+
if uploaded_file:
|
124 |
try:
|
125 |
+
image = Image.open(uploaded_file).convert("RGB")
|
126 |
st.image(image, caption="Uploaded Leaf Image", use_column_width=True)
|
127 |
+
|
128 |
+
if st.button("π Predict Disease"):
|
129 |
with st.spinner("Analyzing the leaf..."):
|
130 |
disease_name = classify_disease(image)
|
131 |
+
info = get_disease_info(disease_name)
|
132 |
+
|
133 |
+
st.subheader("π¬ Prediction Results")
|
134 |
col1, col2 = st.columns(2)
|
|
|
135 |
with col1:
|
136 |
status = "Healthy" if disease_name.lower() == "healthy" else "Diseased"
|
137 |
st.markdown(f"**Status:** {status}")
|
138 |
+
st.markdown(f"**Detected Disease:** {disease_name}")
|
|
|
139 |
with col2:
|
140 |
+
if disease_name.lower() == "healthy":
|
141 |
+
st.success("β
Plant is Healthy")
|
142 |
else:
|
143 |
+
st.warning("β οΈ Disease Detected")
|
144 |
+
|
145 |
+
st.subheader("π Detailed Information")
|
146 |
+
st.write(info["description"])
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
except Exception as e:
|
148 |
st.error(f"Error processing image: {str(e)}")
|
149 |
|
150 |
if __name__ == "__main__":
|
151 |
+
main()
|