Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import streamlit as st
|
3 |
+
import tensorflow as tf
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
# Treatment database (expand with your own data)
|
8 |
+
TREATMENTS = {
|
9 |
+
"Tomato_Early_Blight": {
|
10 |
+
"summary": "Early Blight (Alternaria solani)",
|
11 |
+
"treatment": [
|
12 |
+
"Remove infected leaves immediately",
|
13 |
+
"Apply chlorothalonil (1 tbsp/gallon) weekly",
|
14 |
+
"Improve air circulation around plants"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
"Potato_Late_Blight": {
|
18 |
+
"summary": "Late Blight (Phytophthora infestans)",
|
19 |
+
"treatment": [
|
20 |
+
"Destroy infected plants",
|
21 |
+
"Apply copper-based fungicides every 7 days",
|
22 |
+
"Avoid overhead watering"
|
23 |
+
]
|
24 |
+
}
|
25 |
+
}
|
26 |
+
|
27 |
+
# Load pre-trained model (using open-source model from TF Hub)
|
28 |
+
@st.cache_resource
|
29 |
+
def load_model():
|
30 |
+
try:
|
31 |
+
model = tf.keras.models.load_model('model/plant_disease_model.h5')
|
32 |
+
except:
|
33 |
+
# Fallback to pre-trained EfficientNet
|
34 |
+
model = tf.keras.applications.EfficientNetB3(
|
35 |
+
input_shape=(256,256,3),
|
36 |
+
weights='imagenet',
|
37 |
+
include_top=False
|
38 |
+
)
|
39 |
+
model.trainable = False
|
40 |
+
model = tf.keras.Sequential([
|
41 |
+
model,
|
42 |
+
tf.keras.layers.GlobalAveragePooling2D(),
|
43 |
+
tf.keras.layers.Dense(38, activation='softmax')
|
44 |
+
])
|
45 |
+
return model
|
46 |
+
|
47 |
+
def preprocess_image(image):
|
48 |
+
img = Image.open(image).convert('RGB')
|
49 |
+
img = img.resize((256, 256))
|
50 |
+
img_array = tf.keras.preprocessing.image.img_to_array(img)
|
51 |
+
img_array = tf.expand_dims(img_array, 0) / 255.0
|
52 |
+
return img_array
|
53 |
+
|
54 |
+
def main():
|
55 |
+
st.title("π± Plant Disease Detection & Treatment System")
|
56 |
+
st.markdown("Upload a leaf image for disease diagnosis and treatment recommendations")
|
57 |
+
|
58 |
+
uploaded_file = st.file_uploader("Choose a leaf image...", type=["jpg", "jpeg", "png"])
|
59 |
+
|
60 |
+
if uploaded_file is not None:
|
61 |
+
# Display image
|
62 |
+
st.image(uploaded_file, caption='Uploaded Leaf Image', width=300)
|
63 |
+
|
64 |
+
# Preprocess and predict
|
65 |
+
img_array = preprocess_image(uploaded_file)
|
66 |
+
model = load_model()
|
67 |
+
predictions = model.predict(img_array)
|
68 |
+
predicted_class = np.argmax(predictions[0])
|
69 |
+
|
70 |
+
# Get class name (replace with your actual class names)
|
71 |
+
class_names = ["Tomato_Early_Blight", "Potato_Late_Blight"] # Add all 38 classes
|
72 |
+
|
73 |
+
# Display results
|
74 |
+
st.subheader("π Diagnosis Summary")
|
75 |
+
disease = class_names[predicted_class]
|
76 |
+
st.success(f"Detected Disease: **{disease.replace('_', ' ')}**")
|
77 |
+
st.write(f"Confidence: {predictions[0][predicted_class]*100:.2f}%")
|
78 |
+
|
79 |
+
# Show treatment
|
80 |
+
st.subheader("π Recommended Treatment")
|
81 |
+
if disease in TREATMENTS:
|
82 |
+
st.markdown(f"**{TREATMENTS[disease]['summary']}**")
|
83 |
+
for step in TREATMENTS[disease]["treatment"]:
|
84 |
+
st.markdown(f"- {step}")
|
85 |
+
else:
|
86 |
+
st.warning("Treatment information not found for this disease")
|
87 |
+
|
88 |
+
if __name__ == "__main__":
|
89 |
+
main()
|