sundea commited on
Commit
25c1417
·
1 Parent(s): 5f6b17a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -231
app.py CHANGED
@@ -1,128 +1,16 @@
1
- # import argparse
2
- # import os
3
- # from importlib import import_module
4
-
5
- # import gradio as gr
6
- # from tqdm import tqdm
7
- # import models.TextCNN
8
- # import torch
9
- # import pickle as pkl
10
- # from utils import build_dataset
11
-
12
- # classes = ['金融类', '房地产类', '股票类', '教育类', '科技类', '社会类', '政治类', '体育类', '游戏类',
13
- # '娱乐类']
14
-
15
- # MAX_VOCAB_SIZE = 10000 # 词表长度限制
16
- # UNK, PAD = '<UNK>', '<PAD>' # 未知字,padding符号
17
-
18
-
19
- # def build_vocab(file_path, tokenizer, max_size, min_freq):
20
- # vocab_dic = {}
21
- # with open(file_path, 'r', encoding='UTF-8') as f:
22
- # for line in tqdm(f):
23
- # lin = line.strip()
24
- # if not lin:
25
- # continue
26
- # content = lin.split('\t')[0]
27
- # for word in tokenizer(content):
28
- # vocab_dic[word] = vocab_dic.get(word, 0) + 1
29
- # vocab_list = sorted([_ for _ in vocab_dic.items() if _[1] >= min_freq], key=lambda x: x[1], reverse=True)[
30
- # :max_size]
31
- # vocab_dic = {word_count[0]: idx for idx, word_count in enumerate(vocab_list)}
32
- # vocab_dic.update({UNK: len(vocab_dic), PAD: len(vocab_dic) + 1})
33
- # return vocab_dic
34
-
35
-
36
-
37
-
38
-
39
-
40
-
41
-
42
- # def greet(text):
43
- # parser = argparse.ArgumentParser(description='Chinese Text Classification')
44
- # parser.add_argument('--word', default=False, type=bool, help='True for word, False for char')
45
- # args = parser.parse_args()
46
- # model_name = 'TextCNN'
47
- # dataset = 'THUCNews' # 数据集
48
- # embedding = 'embedding_SougouNews.npz'
49
- # x = import_module('models.' + model_name)
50
-
51
- # config = x.Config(dataset, embedding)
52
- # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
53
-
54
- # model = models.TextCNN.Model(config)
55
-
56
- # # vocab, train_data, dev_data, test_data = build_dataset(config, args.word)
57
- # model.load_state_dict(torch.load('THUCNews/saved_dict/TextCNN.ckpt', map_location=torch.device('cpu')))
58
- # model.to(device)
59
- # model.eval()
60
-
61
- # tokenizer = lambda x: [y for y in x] # char-level
62
- # if os.path.exists(config.vocab_path):
63
- # vocab = pkl.load(open(config.vocab_path, 'rb'))
64
- # else:
65
- # vocab = build_vocab(config.train_path, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1)
66
- # pkl.dump(vocab, open(config.vocab_path, 'wb'))
67
- # # print(f"Vocab size: {len(vocab)}")
68
-
69
- # # content='时评:“国学小天才”录取缘何少佳话'
70
- # content = text
71
-
72
- # words_line = []
73
- # token = tokenizer(content)
74
- # seq_len = len(token)
75
- # pad_size = 32
76
- # contents = []
77
-
78
- # if pad_size:
79
- # if len(token) < pad_size:
80
- # token.extend([PAD] * (pad_size - len(token)))
81
- # else:
82
- # token = token[:pad_size]
83
- # seq_len = pad_size
84
- # # word to id
85
- # for word in token:
86
- # words_line.append(vocab.get(word, vocab.get(UNK)))
87
-
88
- # contents.append((words_line, seq_len))
89
- # # print(words_line)
90
- # # input = torch.LongTensor(words_line).unsqueeze(1).to(device) # convert words_line to LongTensor and add batch dimension
91
- # x = torch.LongTensor([_[0] for _ in contents]).to(device)
92
-
93
- # # pad前的长度(超过pad_size的设为pad_size)
94
- # seq_len = torch.LongTensor([_[1] for _ in contents]).to(device)
95
- # input = (x, seq_len)
96
- # # print(input)
97
- # with torch.no_grad():
98
- # output = model(input)
99
- # predic = torch.max(output.data, 1)[1].cpu().numpy()
100
- # # print(predic)
101
- # # print('类别为:{}'.format(classes[predic[0]]))
102
- # return classes[predic[0]]
103
-
104
-
105
-
106
-
107
-
108
- # demo = gr.Interface(fn=greet, inputs="text", outputs="text", title="text-classification app",
109
- # layout="vertical", description="This is a demo for text classification.")
110
- # demo.launch()
111
-
112
- #你可以使用 CSS 和 HTML 来自定义你的 Gradio 界面,以使其更具吸引力。以下是一个示例,其中使用了一些 CSS 样式和 HTML 标记来改进界面布局和风格:
113
-
114
-
115
  import argparse
116
  import os
117
  from importlib import import_module
118
 
119
  import gradio as gr
 
120
  import models.TextCNN
121
  import torch
122
  import pickle as pkl
123
- from tqdm import tqdm
124
 
125
- classes = ['金融类', '房地产类', '股票类', '教育类', '科技类', '社会类', '政治类', '体育类', '游戏类', '娱乐类']
 
126
 
127
  MAX_VOCAB_SIZE = 10000 # 词表长度限制
128
  UNK, PAD = '<UNK>', '<PAD>' # 未知字,padding符号
@@ -145,6 +33,12 @@ def build_vocab(file_path, tokenizer, max_size, min_freq):
145
  return vocab_dic
146
 
147
 
 
 
 
 
 
 
148
  def greet(text):
149
  parser = argparse.ArgumentParser(description='Chinese Text Classification')
150
  parser.add_argument('--word', default=False, type=bool, help='True for word, False for char')
@@ -207,123 +101,12 @@ def greet(text):
207
  # print('类别为:{}'.format(classes[predic[0]]))
208
  return classes[predic[0]]
209
 
210
- # 自定义样式和布局
211
- css = """
212
- body {
213
- background-color: #f8f8f8;
214
- font-family: Arial, sans-serif;
215
- }
216
-
217
- .container {
218
- max-width: 800px;
219
- margin: 0 auto;
220
- padding: 50px;
221
- }
222
-
223
- h1 {
224
- font-size: 36px;
225
- font-weight: bold;
226
- color: #333333;
227
- text-align: center;
228
- margin-bottom: 50px;
229
- }
230
-
231
- .gradio-interface {
232
- border: none;
233
- box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1);
234
- border-radius: 10px;
235
- overflow: hidden;
236
- margin-bottom: 50px;
237
- }
238
-
239
- .gradio-input {
240
- background-color: #ffffff;
241
- border: none;
242
- border-radius: 5px;
243
- padding: 15px;
244
- box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1);
245
- font-size: 18px;
246
- color: #333333;
247
- width: 100%;
248
- margin-bottom: 20px;
249
- }
250
-
251
- .gradio-output {
252
- background-color: #ffffff;
253
- border: none;
254
- border-radius: 5px;
255
- padding: 15px;
256
- box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1);
257
- font-size: 18px;
258
- color: #333333;
259
- width: 100%;
260
- margin-bottom: 20px;
261
- }
262
-
263
- .gradio-interface:hover {
264
- box-shadow: 0px 0px 20px rgba(0, 0, 0, 0.2);
265
- }
266
-
267
- .gradio-interface:focus-within {
268
- box-shadow: 0px 0px 20px rgba(0, 0, 0, 0.2);
269
- }
270
-
271
- .gradio-interface .input-group {
272
- margin-bottom: 20px;
273
- }
274
-
275
- .gradio-interface .input-label {
276
- font-size: 24px;
277
- font-weight: bold;
278
- color: #333333;
279
- margin-bottom: 10px;
280
- }
281
-
282
- .gradio-interface .input-description {
283
- font-size: 16px;
284
- color: #666666;
285
- margin-bottom: 20px;
286
- }
287
-
288
- .gradio-interface .output-label {
289
- font-size: 24px;
290
- font-weight: bold;
291
- color: #333333;
292
- margin-bottom: 10px;
293
- }
294
-
295
- .gradio-interface .output-description {
296
- font-size: 16px;
297
- color: #666666;
298
- margin-bottom: 20px;
299
- }
300
-
301
- .gradio-interface .input-group input[type="text"]::placeholder {
302
- color: #999999;
303
- }
304
-
305
- .gradio-button {
306
- background-color: #333333;
307
- color: #ffffff;
308
- border: none;
309
- border-radius: 5px;
310
- padding: 15px 30px;
311
- font-size: 18px;
312
- font-weight: bold;
313
- cursor: pointer;
314
- transition: background-color 0.2s ease;
315
- }
316
 
317
- .gradio-button:hover {
318
- background-color: #111111;
319
- }
320
- """
321
 
322
- iface = gr.Interface(fn=greet, inputs="text", outputs="text", title="Text Classification App",
323
- description="This is a demo for text classification.", css=css,
324
-
325
- examples=[["今天天气真好"], ["这个手机真不错"], ["新冠疫情对经济的影响"]])
326
 
327
- iface.launch()
328
 
 
 
 
329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import argparse
2
  import os
3
  from importlib import import_module
4
 
5
  import gradio as gr
6
+ from tqdm import tqdm
7
  import models.TextCNN
8
  import torch
9
  import pickle as pkl
10
+ from utils import build_dataset
11
 
12
+ classes = ['金融类', '房地产类', '股票类', '教育类', '科技类', '社会类', '政治类', '体育类', '游戏类',
13
+ '娱乐类']
14
 
15
  MAX_VOCAB_SIZE = 10000 # 词表长度限制
16
  UNK, PAD = '<UNK>', '<PAD>' # 未知字,padding符号
 
33
  return vocab_dic
34
 
35
 
36
+
37
+
38
+
39
+
40
+
41
+
42
  def greet(text):
43
  parser = argparse.ArgumentParser(description='Chinese Text Classification')
44
  parser.add_argument('--word', default=False, type=bool, help='True for word, False for char')
 
101
  # print('类别为:{}'.format(classes[predic[0]]))
102
  return classes[predic[0]]
103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
 
 
 
 
 
105
 
 
 
 
 
106
 
 
107
 
108
+ demo = gr.Interface(fn=greet, inputs="text", outputs="text", title="text-classification app",
109
+ layout="vertical", description="This is a demo for text classification.")
110
+ demo.launch()
111
 
112
+ #