Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
from importlib import import_module
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
from tqdm import tqdm
|
7 |
+
import models.TextCNN
|
8 |
+
import torch
|
9 |
+
import pickle as pkl
|
10 |
+
from utils import build_dataset
|
11 |
+
|
12 |
+
classes = ['finance', 'realty', 'stocks', 'education', 'science', 'society', 'politics', 'sports', 'game',
|
13 |
+
'entertainment']
|
14 |
+
|
15 |
+
MAX_VOCAB_SIZE = 10000 # 词表长度限制
|
16 |
+
UNK, PAD = '<UNK>', '<PAD>' # 未知字,padding符号
|
17 |
+
|
18 |
+
|
19 |
+
def build_vocab(file_path, tokenizer, max_size, min_freq):
|
20 |
+
vocab_dic = {}
|
21 |
+
with open(file_path, 'r', encoding='UTF-8') as f:
|
22 |
+
for line in tqdm(f):
|
23 |
+
lin = line.strip()
|
24 |
+
if not lin:
|
25 |
+
continue
|
26 |
+
content = lin.split('\t')[0]
|
27 |
+
for word in tokenizer(content):
|
28 |
+
vocab_dic[word] = vocab_dic.get(word, 0) + 1
|
29 |
+
vocab_list = sorted([_ for _ in vocab_dic.items() if _[1] >= min_freq], key=lambda x: x[1], reverse=True)[
|
30 |
+
:max_size]
|
31 |
+
vocab_dic = {word_count[0]: idx for idx, word_count in enumerate(vocab_list)}
|
32 |
+
vocab_dic.update({UNK: len(vocab_dic), PAD: len(vocab_dic) + 1})
|
33 |
+
return vocab_dic
|
34 |
+
|
35 |
+
|
36 |
+
# parser = argparse.ArgumentParser(description='Chinese Text Classification')
|
37 |
+
# parser.add_argument('--word', default=False, type=bool, help='True for word, False for char')
|
38 |
+
# args = parser.parse_args()
|
39 |
+
# model_name = 'TextCNN'
|
40 |
+
# dataset = 'THUCNews' # 数据集
|
41 |
+
# embedding = 'embedding_SougouNews.npz'
|
42 |
+
# x = import_module('models.' + model_name)
|
43 |
+
#
|
44 |
+
# config = x.Config(dataset, embedding)
|
45 |
+
# device = 'cuda:0'
|
46 |
+
# model = models.TextCNN.Model(config)
|
47 |
+
#
|
48 |
+
# # vocab, train_data, dev_data, test_data = build_dataset(config, args.word)
|
49 |
+
# model.load_state_dict(torch.load('THUCNews/saved_dict/TextCNN.ckpt'))
|
50 |
+
# model.to(device)
|
51 |
+
# model.eval()
|
52 |
+
#
|
53 |
+
# tokenizer = lambda x: [y for y in x] # char-level
|
54 |
+
# if os.path.exists(config.vocab_path):
|
55 |
+
# vocab = pkl.load(open(config.vocab_path, 'rb'))
|
56 |
+
# else:
|
57 |
+
# vocab = build_vocab(config.train_path, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1)
|
58 |
+
# pkl.dump(vocab, open(config.vocab_path, 'wb'))
|
59 |
+
# print(f"Vocab size: {len(vocab)}")
|
60 |
+
#
|
61 |
+
# # content='时评:“国学小天才”录取缘何少佳话'
|
62 |
+
# content = input('输入语句:')
|
63 |
+
#
|
64 |
+
# words_line = []
|
65 |
+
# token = tokenizer(content)
|
66 |
+
# seq_len = len(token)
|
67 |
+
# pad_size = 32
|
68 |
+
# contents = []
|
69 |
+
#
|
70 |
+
# if pad_size:
|
71 |
+
# if len(token) < pad_size:
|
72 |
+
# token.extend([PAD] * (pad_size - len(token)))
|
73 |
+
# else:
|
74 |
+
# token = token[:pad_size]
|
75 |
+
# seq_len = pad_size
|
76 |
+
# # word to id
|
77 |
+
# for word in token:
|
78 |
+
# words_line.append(vocab.get(word, vocab.get(UNK)))
|
79 |
+
#
|
80 |
+
# contents.append((words_line, seq_len))
|
81 |
+
# print(words_line)
|
82 |
+
# # input = torch.LongTensor(words_line).unsqueeze(1).to(device) # convert words_line to LongTensor and add batch dimension
|
83 |
+
# x = torch.LongTensor([_[0] for _ in contents]).to(device)
|
84 |
+
#
|
85 |
+
# # pad前的长度(超过pad_size的设为pad_size)
|
86 |
+
# seq_len = torch.LongTensor([_[1] for _ in contents]).to(device)
|
87 |
+
# input = (x, seq_len)
|
88 |
+
# # print(input)
|
89 |
+
# with torch.no_grad():
|
90 |
+
# output = model(input)
|
91 |
+
# predic = torch.max(output.data, 1)[1].cpu().numpy()
|
92 |
+
# print(predic)
|
93 |
+
# print('类别为:{}'.format(classes[predic[0]]))
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
def greet(text):
|
99 |
+
parser = argparse.ArgumentParser(description='Chinese Text Classification')
|
100 |
+
parser.add_argument('--word', default=False, type=bool, help='True for word, False for char')
|
101 |
+
args = parser.parse_args()
|
102 |
+
model_name = 'TextCNN'
|
103 |
+
dataset = 'THUCNews' # 数据集
|
104 |
+
embedding = 'embedding_SougouNews.npz'
|
105 |
+
x = import_module('models.' + model_name)
|
106 |
+
|
107 |
+
config = x.Config(dataset, embedding)
|
108 |
+
device = 'cuda:0'
|
109 |
+
model = models.TextCNN.Model(config)
|
110 |
+
|
111 |
+
# vocab, train_data, dev_data, test_data = build_dataset(config, args.word)
|
112 |
+
model.load_state_dict(torch.load('THUCNews/saved_dict/TextCNN.ckpt'))
|
113 |
+
model.to(device)
|
114 |
+
model.eval()
|
115 |
+
|
116 |
+
tokenizer = lambda x: [y for y in x] # char-level
|
117 |
+
if os.path.exists(config.vocab_path):
|
118 |
+
vocab = pkl.load(open(config.vocab_path, 'rb'))
|
119 |
+
else:
|
120 |
+
vocab = build_vocab(config.train_path, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1)
|
121 |
+
pkl.dump(vocab, open(config.vocab_path, 'wb'))
|
122 |
+
# print(f"Vocab size: {len(vocab)}")
|
123 |
+
|
124 |
+
# content='时评:“国学小天才”录取缘何少佳话'
|
125 |
+
content = text
|
126 |
+
|
127 |
+
words_line = []
|
128 |
+
token = tokenizer(content)
|
129 |
+
seq_len = len(token)
|
130 |
+
pad_size = 32
|
131 |
+
contents = []
|
132 |
+
|
133 |
+
if pad_size:
|
134 |
+
if len(token) < pad_size:
|
135 |
+
token.extend([PAD] * (pad_size - len(token)))
|
136 |
+
else:
|
137 |
+
token = token[:pad_size]
|
138 |
+
seq_len = pad_size
|
139 |
+
# word to id
|
140 |
+
for word in token:
|
141 |
+
words_line.append(vocab.get(word, vocab.get(UNK)))
|
142 |
+
|
143 |
+
contents.append((words_line, seq_len))
|
144 |
+
# print(words_line)
|
145 |
+
# input = torch.LongTensor(words_line).unsqueeze(1).to(device) # convert words_line to LongTensor and add batch dimension
|
146 |
+
x = torch.LongTensor([_[0] for _ in contents]).to(device)
|
147 |
+
|
148 |
+
# pad前的长度(超过pad_size的设为pad_size)
|
149 |
+
seq_len = torch.LongTensor([_[1] for _ in contents]).to(device)
|
150 |
+
input = (x, seq_len)
|
151 |
+
# print(input)
|
152 |
+
with torch.no_grad():
|
153 |
+
output = model(input)
|
154 |
+
predic = torch.max(output.data, 1)[1].cpu().numpy()
|
155 |
+
# print(predic)
|
156 |
+
# print('类别为:{}'.format(classes[predic[0]]))
|
157 |
+
return classes[predic[0]]
|
158 |
+
#
|
159 |
+
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
160 |
+
|
161 |
+
demo.launch(server_port=9090)
|
162 |
+
# with torch.no_grad():
|
163 |
+
# output=model(input)
|
164 |
+
# print(output)
|
165 |
+
|
166 |
+
#
|
167 |
+
# start_time = time.time()
|
168 |
+
# test_iter = build_iterator(test_data, config)
|
169 |
+
# with torch.no_grad():
|
170 |
+
# predict_all = np.array([], dtype=int)
|
171 |
+
# labels_all = np.array([], dtype=int)
|
172 |
+
# for texts, labels in test_iter:
|
173 |
+
# # texts=texts.to(device)
|
174 |
+
# print(texts)
|
175 |
+
# outputs = model(texts)
|
176 |
+
# loss = F.cross_entropy(outputs, labels)
|
177 |
+
# labels = labels.data.cpu().numpy()
|
178 |
+
# predic = torch.max(outputs.data, 1)[1].cpu().numpy()
|
179 |
+
# labels_all = np.append(labels_all, labels)
|
180 |
+
# predict_all = np.append(predict_all, predic)
|
181 |
+
# break
|
182 |
+
# print(labels_all)
|
183 |
+
# print(predict_all)
|
184 |
+
#
|
185 |
+
#
|
186 |
+
|
187 |
+
|