Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import os
|
| 3 |
+
from importlib import import_module
|
| 4 |
+
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
import models.TextCNN
|
| 8 |
+
import torch
|
| 9 |
+
import pickle as pkl
|
| 10 |
+
from utils import build_dataset
|
| 11 |
+
|
| 12 |
+
classes = ['finance', 'realty', 'stocks', 'education', 'science', 'society', 'politics', 'sports', 'game',
|
| 13 |
+
'entertainment']
|
| 14 |
+
|
| 15 |
+
MAX_VOCAB_SIZE = 10000 # 词表长度限制
|
| 16 |
+
UNK, PAD = '<UNK>', '<PAD>' # 未知字,padding符号
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def build_vocab(file_path, tokenizer, max_size, min_freq):
|
| 20 |
+
vocab_dic = {}
|
| 21 |
+
with open(file_path, 'r', encoding='UTF-8') as f:
|
| 22 |
+
for line in tqdm(f):
|
| 23 |
+
lin = line.strip()
|
| 24 |
+
if not lin:
|
| 25 |
+
continue
|
| 26 |
+
content = lin.split('\t')[0]
|
| 27 |
+
for word in tokenizer(content):
|
| 28 |
+
vocab_dic[word] = vocab_dic.get(word, 0) + 1
|
| 29 |
+
vocab_list = sorted([_ for _ in vocab_dic.items() if _[1] >= min_freq], key=lambda x: x[1], reverse=True)[
|
| 30 |
+
:max_size]
|
| 31 |
+
vocab_dic = {word_count[0]: idx for idx, word_count in enumerate(vocab_list)}
|
| 32 |
+
vocab_dic.update({UNK: len(vocab_dic), PAD: len(vocab_dic) + 1})
|
| 33 |
+
return vocab_dic
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# parser = argparse.ArgumentParser(description='Chinese Text Classification')
|
| 37 |
+
# parser.add_argument('--word', default=False, type=bool, help='True for word, False for char')
|
| 38 |
+
# args = parser.parse_args()
|
| 39 |
+
# model_name = 'TextCNN'
|
| 40 |
+
# dataset = 'THUCNews' # 数据集
|
| 41 |
+
# embedding = 'embedding_SougouNews.npz'
|
| 42 |
+
# x = import_module('models.' + model_name)
|
| 43 |
+
#
|
| 44 |
+
# config = x.Config(dataset, embedding)
|
| 45 |
+
# device = 'cuda:0'
|
| 46 |
+
# model = models.TextCNN.Model(config)
|
| 47 |
+
#
|
| 48 |
+
# # vocab, train_data, dev_data, test_data = build_dataset(config, args.word)
|
| 49 |
+
# model.load_state_dict(torch.load('THUCNews/saved_dict/TextCNN.ckpt'))
|
| 50 |
+
# model.to(device)
|
| 51 |
+
# model.eval()
|
| 52 |
+
#
|
| 53 |
+
# tokenizer = lambda x: [y for y in x] # char-level
|
| 54 |
+
# if os.path.exists(config.vocab_path):
|
| 55 |
+
# vocab = pkl.load(open(config.vocab_path, 'rb'))
|
| 56 |
+
# else:
|
| 57 |
+
# vocab = build_vocab(config.train_path, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1)
|
| 58 |
+
# pkl.dump(vocab, open(config.vocab_path, 'wb'))
|
| 59 |
+
# print(f"Vocab size: {len(vocab)}")
|
| 60 |
+
#
|
| 61 |
+
# # content='时评:“国学小天才”录取缘何少佳话'
|
| 62 |
+
# content = input('输入语句:')
|
| 63 |
+
#
|
| 64 |
+
# words_line = []
|
| 65 |
+
# token = tokenizer(content)
|
| 66 |
+
# seq_len = len(token)
|
| 67 |
+
# pad_size = 32
|
| 68 |
+
# contents = []
|
| 69 |
+
#
|
| 70 |
+
# if pad_size:
|
| 71 |
+
# if len(token) < pad_size:
|
| 72 |
+
# token.extend([PAD] * (pad_size - len(token)))
|
| 73 |
+
# else:
|
| 74 |
+
# token = token[:pad_size]
|
| 75 |
+
# seq_len = pad_size
|
| 76 |
+
# # word to id
|
| 77 |
+
# for word in token:
|
| 78 |
+
# words_line.append(vocab.get(word, vocab.get(UNK)))
|
| 79 |
+
#
|
| 80 |
+
# contents.append((words_line, seq_len))
|
| 81 |
+
# print(words_line)
|
| 82 |
+
# # input = torch.LongTensor(words_line).unsqueeze(1).to(device) # convert words_line to LongTensor and add batch dimension
|
| 83 |
+
# x = torch.LongTensor([_[0] for _ in contents]).to(device)
|
| 84 |
+
#
|
| 85 |
+
# # pad前的长度(超过pad_size的设为pad_size)
|
| 86 |
+
# seq_len = torch.LongTensor([_[1] for _ in contents]).to(device)
|
| 87 |
+
# input = (x, seq_len)
|
| 88 |
+
# # print(input)
|
| 89 |
+
# with torch.no_grad():
|
| 90 |
+
# output = model(input)
|
| 91 |
+
# predic = torch.max(output.data, 1)[1].cpu().numpy()
|
| 92 |
+
# print(predic)
|
| 93 |
+
# print('类别为:{}'.format(classes[predic[0]]))
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def greet(text):
|
| 99 |
+
parser = argparse.ArgumentParser(description='Chinese Text Classification')
|
| 100 |
+
parser.add_argument('--word', default=False, type=bool, help='True for word, False for char')
|
| 101 |
+
args = parser.parse_args()
|
| 102 |
+
model_name = 'TextCNN'
|
| 103 |
+
dataset = 'THUCNews' # 数据集
|
| 104 |
+
embedding = 'embedding_SougouNews.npz'
|
| 105 |
+
x = import_module('models.' + model_name)
|
| 106 |
+
|
| 107 |
+
config = x.Config(dataset, embedding)
|
| 108 |
+
device = 'cuda:0'
|
| 109 |
+
model = models.TextCNN.Model(config)
|
| 110 |
+
|
| 111 |
+
# vocab, train_data, dev_data, test_data = build_dataset(config, args.word)
|
| 112 |
+
model.load_state_dict(torch.load('THUCNews/saved_dict/TextCNN.ckpt'))
|
| 113 |
+
model.to(device)
|
| 114 |
+
model.eval()
|
| 115 |
+
|
| 116 |
+
tokenizer = lambda x: [y for y in x] # char-level
|
| 117 |
+
if os.path.exists(config.vocab_path):
|
| 118 |
+
vocab = pkl.load(open(config.vocab_path, 'rb'))
|
| 119 |
+
else:
|
| 120 |
+
vocab = build_vocab(config.train_path, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1)
|
| 121 |
+
pkl.dump(vocab, open(config.vocab_path, 'wb'))
|
| 122 |
+
# print(f"Vocab size: {len(vocab)}")
|
| 123 |
+
|
| 124 |
+
# content='时评:“国学小天才”录取缘何少佳话'
|
| 125 |
+
content = text
|
| 126 |
+
|
| 127 |
+
words_line = []
|
| 128 |
+
token = tokenizer(content)
|
| 129 |
+
seq_len = len(token)
|
| 130 |
+
pad_size = 32
|
| 131 |
+
contents = []
|
| 132 |
+
|
| 133 |
+
if pad_size:
|
| 134 |
+
if len(token) < pad_size:
|
| 135 |
+
token.extend([PAD] * (pad_size - len(token)))
|
| 136 |
+
else:
|
| 137 |
+
token = token[:pad_size]
|
| 138 |
+
seq_len = pad_size
|
| 139 |
+
# word to id
|
| 140 |
+
for word in token:
|
| 141 |
+
words_line.append(vocab.get(word, vocab.get(UNK)))
|
| 142 |
+
|
| 143 |
+
contents.append((words_line, seq_len))
|
| 144 |
+
# print(words_line)
|
| 145 |
+
# input = torch.LongTensor(words_line).unsqueeze(1).to(device) # convert words_line to LongTensor and add batch dimension
|
| 146 |
+
x = torch.LongTensor([_[0] for _ in contents]).to(device)
|
| 147 |
+
|
| 148 |
+
# pad前的长度(超过pad_size的设为pad_size)
|
| 149 |
+
seq_len = torch.LongTensor([_[1] for _ in contents]).to(device)
|
| 150 |
+
input = (x, seq_len)
|
| 151 |
+
# print(input)
|
| 152 |
+
with torch.no_grad():
|
| 153 |
+
output = model(input)
|
| 154 |
+
predic = torch.max(output.data, 1)[1].cpu().numpy()
|
| 155 |
+
# print(predic)
|
| 156 |
+
# print('类别为:{}'.format(classes[predic[0]]))
|
| 157 |
+
return classes[predic[0]]
|
| 158 |
+
#
|
| 159 |
+
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 160 |
+
|
| 161 |
+
demo.launch(server_port=9090)
|
| 162 |
+
# with torch.no_grad():
|
| 163 |
+
# output=model(input)
|
| 164 |
+
# print(output)
|
| 165 |
+
|
| 166 |
+
#
|
| 167 |
+
# start_time = time.time()
|
| 168 |
+
# test_iter = build_iterator(test_data, config)
|
| 169 |
+
# with torch.no_grad():
|
| 170 |
+
# predict_all = np.array([], dtype=int)
|
| 171 |
+
# labels_all = np.array([], dtype=int)
|
| 172 |
+
# for texts, labels in test_iter:
|
| 173 |
+
# # texts=texts.to(device)
|
| 174 |
+
# print(texts)
|
| 175 |
+
# outputs = model(texts)
|
| 176 |
+
# loss = F.cross_entropy(outputs, labels)
|
| 177 |
+
# labels = labels.data.cpu().numpy()
|
| 178 |
+
# predic = torch.max(outputs.data, 1)[1].cpu().numpy()
|
| 179 |
+
# labels_all = np.append(labels_all, labels)
|
| 180 |
+
# predict_all = np.append(predict_all, predic)
|
| 181 |
+
# break
|
| 182 |
+
# print(labels_all)
|
| 183 |
+
# print(predict_all)
|
| 184 |
+
#
|
| 185 |
+
#
|
| 186 |
+
|
| 187 |
+
|