Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import argparse
|
2 |
import os
|
3 |
from importlib import import_module
|
4 |
|
5 |
import gradio as gr
|
6 |
-
from tqdm import tqdm
|
7 |
import models.TextCNN
|
8 |
import torch
|
9 |
import pickle as pkl
|
10 |
-
from
|
11 |
|
12 |
-
classes = ['金融类', '房地产类', '股票类', '教育类', '科技类', '社会类', '政治类', '体育类', '游戏类',
|
13 |
-
'娱乐类']
|
14 |
|
15 |
MAX_VOCAB_SIZE = 10000 # 词表长度限制
|
16 |
UNK, PAD = '<UNK>', '<PAD>' # 未知字,padding符号
|
@@ -33,12 +145,6 @@ def build_vocab(file_path, tokenizer, max_size, min_freq):
|
|
33 |
return vocab_dic
|
34 |
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
def greet(text):
|
43 |
parser = argparse.ArgumentParser(description='Chinese Text Classification')
|
44 |
parser.add_argument('--word', default=False, type=bool, help='True for word, False for char')
|
@@ -101,14 +207,142 @@ def greet(text):
|
|
101 |
# print('类别为:{}'.format(classes[predic[0]]))
|
102 |
return classes[predic[0]]
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
|
|
|
|
|
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
|
|
|
|
|
|
|
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
|
|
|
|
|
|
|
|
112 |
|
|
|
113 |
|
114 |
|
|
|
1 |
+
# import argparse
|
2 |
+
# import os
|
3 |
+
# from importlib import import_module
|
4 |
+
|
5 |
+
# import gradio as gr
|
6 |
+
# from tqdm import tqdm
|
7 |
+
# import models.TextCNN
|
8 |
+
# import torch
|
9 |
+
# import pickle as pkl
|
10 |
+
# from utils import build_dataset
|
11 |
+
|
12 |
+
# classes = ['金融类', '房地产类', '股票类', '教育类', '科技类', '社会类', '政治类', '体育类', '游戏类',
|
13 |
+
# '娱乐类']
|
14 |
+
|
15 |
+
# MAX_VOCAB_SIZE = 10000 # 词表长度限制
|
16 |
+
# UNK, PAD = '<UNK>', '<PAD>' # 未知字,padding符号
|
17 |
+
|
18 |
+
|
19 |
+
# def build_vocab(file_path, tokenizer, max_size, min_freq):
|
20 |
+
# vocab_dic = {}
|
21 |
+
# with open(file_path, 'r', encoding='UTF-8') as f:
|
22 |
+
# for line in tqdm(f):
|
23 |
+
# lin = line.strip()
|
24 |
+
# if not lin:
|
25 |
+
# continue
|
26 |
+
# content = lin.split('\t')[0]
|
27 |
+
# for word in tokenizer(content):
|
28 |
+
# vocab_dic[word] = vocab_dic.get(word, 0) + 1
|
29 |
+
# vocab_list = sorted([_ for _ in vocab_dic.items() if _[1] >= min_freq], key=lambda x: x[1], reverse=True)[
|
30 |
+
# :max_size]
|
31 |
+
# vocab_dic = {word_count[0]: idx for idx, word_count in enumerate(vocab_list)}
|
32 |
+
# vocab_dic.update({UNK: len(vocab_dic), PAD: len(vocab_dic) + 1})
|
33 |
+
# return vocab_dic
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
# def greet(text):
|
43 |
+
# parser = argparse.ArgumentParser(description='Chinese Text Classification')
|
44 |
+
# parser.add_argument('--word', default=False, type=bool, help='True for word, False for char')
|
45 |
+
# args = parser.parse_args()
|
46 |
+
# model_name = 'TextCNN'
|
47 |
+
# dataset = 'THUCNews' # 数据集
|
48 |
+
# embedding = 'embedding_SougouNews.npz'
|
49 |
+
# x = import_module('models.' + model_name)
|
50 |
+
|
51 |
+
# config = x.Config(dataset, embedding)
|
52 |
+
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
53 |
+
|
54 |
+
# model = models.TextCNN.Model(config)
|
55 |
+
|
56 |
+
# # vocab, train_data, dev_data, test_data = build_dataset(config, args.word)
|
57 |
+
# model.load_state_dict(torch.load('THUCNews/saved_dict/TextCNN.ckpt', map_location=torch.device('cpu')))
|
58 |
+
# model.to(device)
|
59 |
+
# model.eval()
|
60 |
+
|
61 |
+
# tokenizer = lambda x: [y for y in x] # char-level
|
62 |
+
# if os.path.exists(config.vocab_path):
|
63 |
+
# vocab = pkl.load(open(config.vocab_path, 'rb'))
|
64 |
+
# else:
|
65 |
+
# vocab = build_vocab(config.train_path, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1)
|
66 |
+
# pkl.dump(vocab, open(config.vocab_path, 'wb'))
|
67 |
+
# # print(f"Vocab size: {len(vocab)}")
|
68 |
+
|
69 |
+
# # content='时评:“国学小天才”录取缘何少佳话'
|
70 |
+
# content = text
|
71 |
+
|
72 |
+
# words_line = []
|
73 |
+
# token = tokenizer(content)
|
74 |
+
# seq_len = len(token)
|
75 |
+
# pad_size = 32
|
76 |
+
# contents = []
|
77 |
+
|
78 |
+
# if pad_size:
|
79 |
+
# if len(token) < pad_size:
|
80 |
+
# token.extend([PAD] * (pad_size - len(token)))
|
81 |
+
# else:
|
82 |
+
# token = token[:pad_size]
|
83 |
+
# seq_len = pad_size
|
84 |
+
# # word to id
|
85 |
+
# for word in token:
|
86 |
+
# words_line.append(vocab.get(word, vocab.get(UNK)))
|
87 |
+
|
88 |
+
# contents.append((words_line, seq_len))
|
89 |
+
# # print(words_line)
|
90 |
+
# # input = torch.LongTensor(words_line).unsqueeze(1).to(device) # convert words_line to LongTensor and add batch dimension
|
91 |
+
# x = torch.LongTensor([_[0] for _ in contents]).to(device)
|
92 |
+
|
93 |
+
# # pad前的长度(超过pad_size的设为pad_size)
|
94 |
+
# seq_len = torch.LongTensor([_[1] for _ in contents]).to(device)
|
95 |
+
# input = (x, seq_len)
|
96 |
+
# # print(input)
|
97 |
+
# with torch.no_grad():
|
98 |
+
# output = model(input)
|
99 |
+
# predic = torch.max(output.data, 1)[1].cpu().numpy()
|
100 |
+
# # print(predic)
|
101 |
+
# # print('类别为:{}'.format(classes[predic[0]]))
|
102 |
+
# return classes[predic[0]]
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
# demo = gr.Interface(fn=greet, inputs="text", outputs="text", title="text-classification app",
|
109 |
+
# layout="vertical", description="This is a demo for text classification.")
|
110 |
+
# demo.launch()
|
111 |
+
|
112 |
+
#你可以使用 CSS 和 HTML 来自定义你的 Gradio 界面,以使其更具吸引力。以下是一个示例,其中使用了一些 CSS 样式和 HTML 标记来改进界面布局和风格:
|
113 |
+
|
114 |
+
|
115 |
import argparse
|
116 |
import os
|
117 |
from importlib import import_module
|
118 |
|
119 |
import gradio as gr
|
|
|
120 |
import models.TextCNN
|
121 |
import torch
|
122 |
import pickle as pkl
|
123 |
+
from tqdm import tqdm
|
124 |
|
125 |
+
classes = ['金融类', '房地产类', '股票类', '教育类', '科技类', '社会类', '政治类', '体育类', '游戏类', '娱乐类']
|
|
|
126 |
|
127 |
MAX_VOCAB_SIZE = 10000 # 词表长度限制
|
128 |
UNK, PAD = '<UNK>', '<PAD>' # 未知字,padding符号
|
|
|
145 |
return vocab_dic
|
146 |
|
147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
def greet(text):
|
149 |
parser = argparse.ArgumentParser(description='Chinese Text Classification')
|
150 |
parser.add_argument('--word', default=False, type=bool, help='True for word, False for char')
|
|
|
207 |
# print('类别为:{}'.format(classes[predic[0]]))
|
208 |
return classes[predic[0]]
|
209 |
|
210 |
+
# 自定义样式和布局
|
211 |
+
css = """
|
212 |
+
body {
|
213 |
+
background-color: #f8f8f8;
|
214 |
+
font-family: Arial, sans-serif;
|
215 |
+
}
|
216 |
+
|
217 |
+
.container {
|
218 |
+
max-width: 800px;
|
219 |
+
margin: 0 auto;
|
220 |
+
padding: 50px;
|
221 |
+
}
|
222 |
+
|
223 |
+
h1 {
|
224 |
+
font-size: 36px;
|
225 |
+
font-weight: bold;
|
226 |
+
color: #333333;
|
227 |
+
text-align: center;
|
228 |
+
margin-bottom: 50px;
|
229 |
+
}
|
230 |
+
|
231 |
+
.gradio-interface {
|
232 |
+
border: none;
|
233 |
+
box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1);
|
234 |
+
border-radius: 10px;
|
235 |
+
overflow: hidden;
|
236 |
+
margin-bottom: 50px;
|
237 |
+
}
|
238 |
+
|
239 |
+
.gradio-input {
|
240 |
+
background-color: #ffffff;
|
241 |
+
border: none;
|
242 |
+
border-radius: 5px;
|
243 |
+
padding: 15px;
|
244 |
+
box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1);
|
245 |
+
font-size: 18px;
|
246 |
+
color: #333333;
|
247 |
+
width: 100%;
|
248 |
+
margin-bottom: 20px;
|
249 |
+
}
|
250 |
+
|
251 |
+
.gradio-output {
|
252 |
+
background-color: #ffffff;
|
253 |
+
border: none;
|
254 |
+
border-radius: 5px;
|
255 |
+
padding: 15px;
|
256 |
+
box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1);
|
257 |
+
font-size: 18px;
|
258 |
+
color: #333333;
|
259 |
+
width: 100%;
|
260 |
+
margin-bottom: 20px;
|
261 |
+
}
|
262 |
+
|
263 |
+
.gradio-interface:hover {
|
264 |
+
box-shadow: 0px 0px 20px rgba(0, 0, 0, 0.2);
|
265 |
+
}
|
266 |
+
|
267 |
+
.gradio-interface:focus-within {
|
268 |
+
box-shadow: 0px 0px 20px rgba(0, 0, 0, 0.2);
|
269 |
+
}
|
270 |
+
|
271 |
+
.gradio-interface .input-group {
|
272 |
+
margin-bottom: 20px;
|
273 |
+
}
|
274 |
+
|
275 |
+
.gradio-interface .input-label {
|
276 |
+
font-size: 24px;
|
277 |
+
font-weight: bold;
|
278 |
+
color: #333333;
|
279 |
+
margin-bottom: 10px;
|
280 |
+
}
|
281 |
+
|
282 |
+
.gradio-interface .input-description {
|
283 |
+
font-size: 16px;
|
284 |
+
color: #666666;
|
285 |
+
margin-bottom: 20px;
|
286 |
+
}
|
287 |
+
|
288 |
+
.gradio-interface .output-label {
|
289 |
+
font-size: 24px;
|
290 |
+
font-weight: bold;
|
291 |
+
color: #333333;
|
292 |
+
margin-bottom: 10px;
|
293 |
+
}
|
294 |
+
|
295 |
+
.gradio-interface .output-description {
|
296 |
+
font-size: 16px;
|
297 |
+
color: #666666;
|
298 |
+
margin-bottom: 20px;
|
299 |
+
}
|
300 |
|
301 |
+
.gradio-interface .input-group input[type="text"]::placeholder {
|
302 |
+
color: #999999;
|
303 |
+
}
|
304 |
|
305 |
+
.gradio-button {
|
306 |
+
background-color: #333333;
|
307 |
+
color: #ffffff;
|
308 |
+
border: none;
|
309 |
+
border-radius: 5px;
|
310 |
+
padding: 15px 30px;
|
311 |
+
font-size: 18px;
|
312 |
+
font-weight: bold;
|
313 |
+
cursor: pointer;
|
314 |
+
transition: background-color 0.2s ease;
|
315 |
+
}
|
316 |
|
317 |
+
.gradio-button:hover {
|
318 |
+
background-color: #111111;
|
319 |
+
}
|
320 |
+
"""
|
321 |
|
322 |
+
html = """
|
323 |
+
<div class="container">
|
324 |
+
<h1>Text Classification</h1>
|
325 |
+
<div class="gradio-interface">
|
326 |
+
<div class="input-group">
|
327 |
+
<label class="input-label">Input Text</label>
|
328 |
+
<div class="input-description">Enter the text that you want to classify:</div>
|
329 |
+
<input type="text" class="gradio-input" placeholder="Enter your text here" id="input_text">
|
330 |
+
</div>
|
331 |
+
<button type="button" class="gradio-button" id="classify_button">Classify</button>
|
332 |
+
<div class="output-group">
|
333 |
+
<label class="output-label">Classification Result</label>
|
334 |
+
<div class="output-description">The predicted class is:</div>
|
335 |
+
<div class="gradio-output" id="output_text"></div>
|
336 |
+
</div>
|
337 |
+
</div>
|
338 |
+
</div>
|
339 |
+
"""
|
340 |
|
341 |
+
iface = gr.Interface(fn=greet, inputs="text", outputs="text", title="Text Classification App",
|
342 |
+
layout="unaligned", description="This is a demo for text classification.", css=css,
|
343 |
+
allow_screenshot=False, allow_flagging=False, allow_share=False, allow_download=False,
|
344 |
+
examples=[["今天天气真好"], ["这个手机真不错"], ["新冠疫情对经济的影响"]])
|
345 |
|
346 |
+
iface.launch(html=html)
|
347 |
|
348 |
|