# import argparse # import os # from importlib import import_module # import gradio as gr # from tqdm import tqdm # import models.TextCNN # import torch # import pickle as pkl # from utils import build_dataset # classes = ['金融类', '房地产类', '股票类', '教育类', '科技类', '社会类', '政治类', '体育类', '游戏类', # '娱乐类'] # MAX_VOCAB_SIZE = 10000 # 词表长度限制 # UNK, PAD = '', '' # 未知字,padding符号 # def build_vocab(file_path, tokenizer, max_size, min_freq): # vocab_dic = {} # with open(file_path, 'r', encoding='UTF-8') as f: # for line in tqdm(f): # lin = line.strip() # if not lin: # continue # content = lin.split('\t')[0] # for word in tokenizer(content): # vocab_dic[word] = vocab_dic.get(word, 0) + 1 # vocab_list = sorted([_ for _ in vocab_dic.items() if _[1] >= min_freq], key=lambda x: x[1], reverse=True)[ # :max_size] # vocab_dic = {word_count[0]: idx for idx, word_count in enumerate(vocab_list)} # vocab_dic.update({UNK: len(vocab_dic), PAD: len(vocab_dic) + 1}) # return vocab_dic # def greet(text): # parser = argparse.ArgumentParser(description='Chinese Text Classification') # parser.add_argument('--word', default=False, type=bool, help='True for word, False for char') # args = parser.parse_args() # model_name = 'TextCNN' # dataset = 'THUCNews' # 数据集 # embedding = 'embedding_SougouNews.npz' # x = import_module('models.' + model_name) # config = x.Config(dataset, embedding) # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # model = models.TextCNN.Model(config) # # vocab, train_data, dev_data, test_data = build_dataset(config, args.word) # model.load_state_dict(torch.load('THUCNews/saved_dict/TextCNN.ckpt', map_location=torch.device('cpu'))) # model.to(device) # model.eval() # tokenizer = lambda x: [y for y in x] # char-level # if os.path.exists(config.vocab_path): # vocab = pkl.load(open(config.vocab_path, 'rb')) # else: # vocab = build_vocab(config.train_path, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1) # pkl.dump(vocab, open(config.vocab_path, 'wb')) # # print(f"Vocab size: {len(vocab)}") # # content='时评:“国学小天才”录取缘何少佳话' # content = text # words_line = [] # token = tokenizer(content) # seq_len = len(token) # pad_size = 32 # contents = [] # if pad_size: # if len(token) < pad_size: # token.extend([PAD] * (pad_size - len(token))) # else: # token = token[:pad_size] # seq_len = pad_size # # word to id # for word in token: # words_line.append(vocab.get(word, vocab.get(UNK))) # contents.append((words_line, seq_len)) # # print(words_line) # # input = torch.LongTensor(words_line).unsqueeze(1).to(device) # convert words_line to LongTensor and add batch dimension # x = torch.LongTensor([_[0] for _ in contents]).to(device) # # pad前的长度(超过pad_size的设为pad_size) # seq_len = torch.LongTensor([_[1] for _ in contents]).to(device) # input = (x, seq_len) # # print(input) # with torch.no_grad(): # output = model(input) # predic = torch.max(output.data, 1)[1].cpu().numpy() # # print(predic) # # print('类别为:{}'.format(classes[predic[0]])) # return classes[predic[0]] # demo = gr.Interface(fn=greet, inputs="text", outputs="text", title="text-classification app", # layout="vertical", description="This is a demo for text classification.") # demo.launch() #你可以使用 CSS 和 HTML 来自定义你的 Gradio 界面,以使其更具吸引力。以下是一个示例,其中使用了一些 CSS 样式和 HTML 标记来改进界面布局和风格: import argparse import os from importlib import import_module import gradio as gr import models.TextCNN import torch import pickle as pkl from tqdm import tqdm classes = ['金融类', '房地产类', '股票类', '教育类', '科技类', '社会类', '政治类', '体育类', '游戏类', '娱乐类'] MAX_VOCAB_SIZE = 10000 # 词表长度限制 UNK, PAD = '', '' # 未知字,padding符号 def build_vocab(file_path, tokenizer, max_size, min_freq): vocab_dic = {} with open(file_path, 'r', encoding='UTF-8') as f: for line in tqdm(f): lin = line.strip() if not lin: continue content = lin.split('\t')[0] for word in tokenizer(content): vocab_dic[word] = vocab_dic.get(word, 0) + 1 vocab_list = sorted([_ for _ in vocab_dic.items() if _[1] >= min_freq], key=lambda x: x[1], reverse=True)[ :max_size] vocab_dic = {word_count[0]: idx for idx, word_count in enumerate(vocab_list)} vocab_dic.update({UNK: len(vocab_dic), PAD: len(vocab_dic) + 1}) return vocab_dic def greet(text): parser = argparse.ArgumentParser(description='Chinese Text Classification') parser.add_argument('--word', default=False, type=bool, help='True for word, False for char') args = parser.parse_args() model_name = 'TextCNN' dataset = 'THUCNews' # 数据集 embedding = 'embedding_SougouNews.npz' x = import_module('models.' + model_name) config = x.Config(dataset, embedding) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = models.TextCNN.Model(config) # vocab, train_data, dev_data, test_data = build_dataset(config, args.word) model.load_state_dict(torch.load('THUCNews/saved_dict/TextCNN.ckpt', map_location=torch.device('cpu'))) model.to(device) model.eval() tokenizer = lambda x: [y for y in x] # char-level if os.path.exists(config.vocab_path): vocab = pkl.load(open(config.vocab_path, 'rb')) else: vocab = build_vocab(config.train_path, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1) pkl.dump(vocab, open(config.vocab_path, 'wb')) # print(f"Vocab size: {len(vocab)}") # content='时评:“国学小天才”录取缘何少佳话' content = text words_line = [] token = tokenizer(content) seq_len = len(token) pad_size = 32 contents = [] if pad_size: if len(token) < pad_size: token.extend([PAD] * (pad_size - len(token))) else: token = token[:pad_size] seq_len = pad_size # word to id for word in token: words_line.append(vocab.get(word, vocab.get(UNK))) contents.append((words_line, seq_len)) # print(words_line) # input = torch.LongTensor(words_line).unsqueeze(1).to(device) # convert words_line to LongTensor and add batch dimension x = torch.LongTensor([_[0] for _ in contents]).to(device) # pad前的长度(超过pad_size的设为pad_size) seq_len = torch.LongTensor([_[1] for _ in contents]).to(device) input = (x, seq_len) # print(input) with torch.no_grad(): output = model(input) predic = torch.max(output.data, 1)[1].cpu().numpy() # print(predic) # print('类别为:{}'.format(classes[predic[0]])) return classes[predic[0]] # 自定义样式和布局 css = """ body { background-color: #f8f8f8; font-family: Arial, sans-serif; } .container { max-width: 800px; margin: 0 auto; padding: 50px; } h1 { font-size: 36px; font-weight: bold; color: #333333; text-align: center; margin-bottom: 50px; } .gradio-interface { border: none; box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1); border-radius: 10px; overflow: hidden; margin-bottom: 50px; } .gradio-input { background-color: #ffffff; border: none; border-radius: 5px; padding: 15px; box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1); font-size: 18px; color: #333333; width: 100%; margin-bottom: 20px; } .gradio-output { background-color: #ffffff; border: none; border-radius: 5px; padding: 15px; box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1); font-size: 18px; color: #333333; width: 100%; margin-bottom: 20px; } .gradio-interface:hover { box-shadow: 0px 0px 20px rgba(0, 0, 0, 0.2); } .gradio-interface:focus-within { box-shadow: 0px 0px 20px rgba(0, 0, 0, 0.2); } .gradio-interface .input-group { margin-bottom: 20px; } .gradio-interface .input-label { font-size: 24px; font-weight: bold; color: #333333; margin-bottom: 10px; } .gradio-interface .input-description { font-size: 16px; color: #666666; margin-bottom: 20px; } .gradio-interface .output-label { font-size: 24px; font-weight: bold; color: #333333; margin-bottom: 10px; } .gradio-interface .output-description { font-size: 16px; color: #666666; margin-bottom: 20px; } .gradio-interface .input-group input[type="text"]::placeholder { color: #999999; } .gradio-button { background-color: #333333; color: #ffffff; border: none; border-radius: 5px; padding: 15px 30px; font-size: 18px; font-weight: bold; cursor: pointer; transition: background-color 0.2s ease; } .gradio-button:hover { background-color: #111111; } """ html = """

Text Classification

Enter the text that you want to classify:
The predicted class is:
""" iface = gr.Interface(fn=greet, inputs="text", outputs="text", title="Text Classification App", layout="unaligned", description="This is a demo for text classification.", css=css, allow_screenshot=False, allow_flagging=False, allow_share=False, allow_download=False, examples=[["今天天气真好"], ["这个手机真不错"], ["新冠疫情对经济的影响"]]) iface.launch(html=html)