Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import torch
|
| 5 |
+
from transformers.models.bert import BertTokenizer, BertForSequenceClassification
|
| 6 |
+
path='./roberta-base-cold'
|
| 7 |
+
vocab='vocab.txt'
|
| 8 |
+
tokenizer = BertTokenizer.from_pretrained(os.path.join(path,vocab))
|
| 9 |
+
model = BertForSequenceClassification.from_pretrained('roberta-base-cold')
|
| 10 |
+
model.eval()
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def get_output(text):
|
| 15 |
+
output=[]
|
| 16 |
+
model_input = tokenizer(text, return_tensors="pt", padding=True)
|
| 17 |
+
model_output = model(**model_input, return_dict=False)
|
| 18 |
+
prediction = torch.argmax(model_output[0].cpu(), dim=-1)
|
| 19 |
+
prediction = [p.item() for p in prediction]
|
| 20 |
+
for i in range(len(prediction)):
|
| 21 |
+
if prediction[i]==0:
|
| 22 |
+
output.append("消极")
|
| 23 |
+
else:
|
| 24 |
+
output.append('积极')
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
return output
|
| 29 |
+
|
| 30 |
+
demo=gr.Interface(fn=get_output,inputs='text',outputs='text')
|
| 31 |
+
demo.launch()
|