File size: 28,585 Bytes
ba5e3a9
ce8a201
7c6ede0
b479da3
0a98475
fb46650
0a98475
7c6ede0
0a98475
 
 
 
9eb42b2
3da7deb
7c6ede0
 
0a98475
7c6ede0
0a98475
ce8a201
7c6ede0
fb46650
 
 
 
 
 
 
 
 
 
 
 
 
 
0a98475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02ca3a8
21b4fcb
0a98475
 
02ca3a8
 
0a98475
 
 
 
 
 
 
 
 
d4575dc
 
 
0a98475
d4575dc
 
 
0a98475
d4575dc
 
 
0a98475
d4575dc
 
 
0a98475
 
 
da5395a
0a98475
 
d4575dc
0a98475
 
 
 
02ca3a8
0a98475
 
 
 
 
02ca3a8
d4575dc
0a98475
 
 
 
 
 
02ca3a8
d4575dc
0a98475
02ca3a8
d4575dc
0a98475
d4575dc
0a98475
 
fb46650
 
 
0a98475
 
 
fb46650
 
d4575dc
0a98475
 
 
 
d4575dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d206e43
 
 
 
 
d4575dc
 
d206e43
 
 
 
 
d4575dc
21b4fcb
d4575dc
21b4fcb
d4575dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a98475
d4575dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3da7deb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4575dc
 
 
 
3da7deb
d4575dc
 
 
 
da5395a
d4575dc
 
3da7deb
d4575dc
 
 
 
 
 
 
 
 
3da7deb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da5395a
3da7deb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9eb42b2
 
 
 
 
3da7deb
9eb42b2
21b4fcb
0a98475
 
 
 
 
 
3da7deb
 
 
 
 
 
 
02ca3a8
0a98475
 
 
 
 
 
 
 
 
 
 
 
02ca3a8
 
0a98475
 
02ca3a8
 
0a98475
 
 
 
 
 
 
 
 
 
 
7c6ede0
9eb42b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c6ede0
0a98475
b0b7186
 
0a98475
 
 
 
 
21b4fcb
da5395a
b087acf
0a98475
 
 
 
 
 
 
 
 
7c6ede0
 
0a98475
7c6ede0
0a98475
7c6ede0
 
0a98475
 
02ca3a8
 
 
0a98475
02ca3a8
0a98475
 
 
 
 
b0b7186
0a98475
 
 
21b4fcb
 
02ca3a8
fb46650
0a98475
 
 
 
 
 
 
 
 
 
 
02ca3a8
 
 
9eb42b2
 
 
 
02ca3a8
0a98475
02ca3a8
 
 
 
 
 
 
 
9eb42b2
21b4fcb
9eb42b2
02ca3a8
21b4fcb
02ca3a8
 
0a98475
 
02ca3a8
9eb42b2
0a98475
 
7c6ede0
0a98475
 
02ca3a8
9eb42b2
0a98475
 
7c6ede0
0a98475
 
 
 
 
7c6ede0
9eb42b2
fb46650
0a98475
 
d206e43
 
 
 
 
fb46650
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
from nemo.collections.asr.models import ASRModel
import torch
import gradio as gr
import spaces
import gc
import shutil
from pathlib import Path
from pydub import AudioSegment
import numpy as np
import os
import gradio.themes as gr_themes
import csv
import json
from typing import List, Tuple

device = "cuda" if torch.cuda.is_available() else "cpu"
MODEL_NAME="nvidia/parakeet-tdt-0.6b-v2"

model = ASRModel.from_pretrained(model_name=MODEL_NAME)
model.eval()

def start_session(request: gr.Request):
    session_hash = request.session_hash
    session_dir = Path(f'/tmp/{session_hash}')
    session_dir.mkdir(parents=True, exist_ok=True)
    print(f"Session with hash {session_hash} started.")
    return session_dir.as_posix()

def end_session(request: gr.Request):
    session_hash = request.session_hash
    session_dir = Path(f'/tmp/{session_hash}')
    if session_dir.exists():
        shutil.rmtree(session_dir)
    print(f"Session with hash {session_hash} ended.")

def get_audio_segment(audio_path, start_second, end_second):
    if not audio_path or not Path(audio_path).exists():
        print(f"Warning: Audio path '{audio_path}' not found or invalid for clipping.")
        return None
    try:
        start_ms = int(start_second * 1000)
        end_ms = int(end_second * 1000)

        start_ms = max(0, start_ms)
        if end_ms <= start_ms:
            print(f"Warning: End time ({end_second}s) is not after start time ({start_second}s). Adjusting end time.")
            end_ms = start_ms + 100

        audio = AudioSegment.from_file(audio_path)
        clipped_audio = audio[start_ms:end_ms]

        samples = np.array(clipped_audio.get_array_of_samples())
        if clipped_audio.channels == 2:
            samples = samples.reshape((-1, 2)).mean(axis=1).astype(samples.dtype)

        frame_rate = clipped_audio.frame_rate
        if frame_rate <= 0:
            print(f"Warning: Invalid frame rate ({frame_rate}) detected for clipped audio.")
            frame_rate = audio.frame_rate

        if samples.size == 0:
            print(f"Warning: Clipped audio resulted in empty samples array ({start_second}s to {end_second}s).")
            return None

        return (frame_rate, samples)
    except FileNotFoundError:
        print(f"Error: Audio file not found at path: {audio_path}")
        return None
    except Exception as e:
        print(f"Error clipping audio {audio_path} from {start_second}s to {end_second}s: {e}")
        return None

def preprocess_audio(audio_path, session_dir):
    """
    オーディオファイルの前処理(リサンプリング、モノラル変換)を行う。

    Args:
        audio_path (str): 入力オーディオファイルのパス。
        session_dir (str): セッションディレクトリのパス。

    Returns:
        tuple: (processed_path, info_path_name, duration_sec) のタプル、または None(処理に失敗した場合)。
    """
    try:
        original_path_name = Path(audio_path).name
        audio_name = Path(audio_path).stem

        try:
            gr.Info(f"Loading audio: {original_path_name}", duration=2)
            audio = AudioSegment.from_file(audio_path)
            duration_sec = audio.duration_seconds
        except Exception as load_e:
            gr.Error(f"Failed to load audio file {original_path_name}: {load_e}", duration=None)
            return None, None, None

        resampled = False
        mono = False
        target_sr = 16000

        if audio.frame_rate != target_sr:
            try:
                audio = audio.set_frame_rate(target_sr)
                resampled = True
            except Exception as resample_e:
                gr.Error(f"Failed to resample audio: {resample_e}", duration=None)
                return None, None, None

        if audio.channels == 2:
            try:
                audio = audio.set_channels(1)
                mono = True
            except Exception as mono_e:
                gr.Error(f"Failed to convert audio to mono: {mono_e}", duration=None)
                return None, None, None
        elif audio.channels > 2:
            gr.Error(f"Audio has {audio.channels} channels. Only mono (1) or stereo (2) supported.", duration=None)
            return None, None, None

        processed_audio_path = None
        if resampled or mono:
            try:
                processed_audio_path = Path(session_dir, f"{audio_name}_resampled.wav")
                audio.export(processed_audio_path, format="wav")
                transcribe_path = processed_audio_path.as_posix()
                info_path_name = f"{original_path_name} (processed)"
            except Exception as export_e:
                gr.Error(f"Failed to export processed audio: {export_e}", duration=None)
                if processed_audio_path and os.path.exists(processed_audio_path):
                    os.remove(processed_audio_path)
                return None, None, None
        else:
            transcribe_path = audio_path
            info_path_name = original_path_name

        return transcribe_path, info_path_name, duration_sec
    except Exception as e:
        gr.Error(f"Audio preprocessing failed: {e}", duration=None)
        return None, None, None

def transcribe_audio(transcribe_path, model, duration_sec, device):
    """
    オーディオファイルを文字起こしし、タイムスタンプを取得する。

    Args:
        transcribe_path (str): 入力オーディオファイルのパス。
        model (ASRModel): 使用するASRモデル。
        duration_sec (float): オーディオファイルの長さ(秒)。
        device (str): 使用するデバイス('cuda' or 'cpu')。

    Returns:
        tuple: (vis_data, raw_times_data, word_vis_data) のタプル、または None(処理に失敗した場合)。
    """
    long_audio_settings_applied = False
    try:
        # CUDA 使用前にメモリをクリアし、断片化を低減
        if device == 'cuda':
            torch.cuda.empty_cache()
            gc.collect()

        model.to(device)
        model.to(torch.float32)

        # メモリ状況をログ出力(デバッグ用)
        if device == 'cuda':
            print(f"CUDA Memory before transcription: {torch.cuda.memory_allocated() / 1024**2:.2f} MB")

        gr.Info(f"Transcribing on {device}...", duration=2)

        if duration_sec > 480:
            try:
                gr.Info("Audio longer than 8 minutes. Applying optimized settings for long transcription.", duration=3)
                print("Applying long audio settings: Local Attention and Chunking.")
                model.change_attention_model("rel_pos_local_attn", [256,256])
                model.change_subsampling_conv_chunking_factor(1)
                long_audio_settings_applied = True
            except Exception as setting_e:
                gr.Warning(f"Could not apply long audio settings: {setting_e}", duration=5)
                print(f"Warning: Failed to apply long audio settings: {setting_e}")
        
        model.to(torch.bfloat16)
        output = model.transcribe([transcribe_path], timestamps=True)

        if not output or not isinstance(output, list) or not output[0] or not hasattr(output[0], 'timestamp') or not output[0].timestamp or 'segment' not in output[0].timestamp:
            gr.Error("Transcription failed or produced unexpected output format.", duration=None)
            return None, None, None

        segment_timestamps = output[0].timestamp['segment']
        vis_data = [[f"{ts['start']:.2f}", f"{ts['end']:.2f}", ts['segment']] for ts in segment_timestamps]
        raw_times_data = [[ts['start'], ts['end']] for ts in segment_timestamps]

        word_timestamps_raw = output[0].timestamp.get("word", [])
        word_vis_data = [
            [f"{w['start']:.2f}", f"{w['end']:.2f}", w["word"]]
            for w in word_timestamps_raw if isinstance(w, dict) and 'start' in w and 'end' in w and 'word' in w
        ]

        gr.Info("Transcription complete.", duration=2)
        return vis_data, raw_times_data, word_vis_data

    except torch.cuda.OutOfMemoryError as e:
        error_msg = 'CUDA out of memory. Please try a shorter audio or reduce GPU load.'
        print(f"CUDA OutOfMemoryError: {e}")
        gr.Error(error_msg, duration=None)
        return None, None, None

    except Exception as e:
        error_msg = f"Transcription failed: {e}"
        print(f"Error during transcription processing: {e}")
        gr.Error(error_msg, duration=None)
        return None, None, None

    finally:
        try:
            if long_audio_settings_applied:
                try:
                    print("Reverting long audio settings.")
                    model.change_attention_model("rel_pos")
                    model.change_subsampling_conv_chunking_factor(-1)
                except Exception as revert_e:
                    print(f"Warning: Failed to revert long audio settings: {revert_e}")
                    gr.Warning(f"Issue reverting model settings after long transcription: {revert_e}", duration=5)

            if device == 'cuda':
                model.cpu()
            gc.collect()
            if device == 'cuda':
                torch.cuda.empty_cache()
        except Exception as cleanup_e:
            print(f"Error during model cleanup: {cleanup_e}")
            gr.Warning(f"Issue during model cleanup: {cleanup_e}", duration=5)

def save_transcripts(session_dir, audio_name, vis_data, word_vis_data):
    """
    文字起こし結果を各種ファイル形式(CSV、SRT、VTT、JSON、LRC)で保存する。

    Args:
        session_dir (str): セッションディレクトリのパス。
        audio_name (str): オーディオファイルの名前。
        vis_data (list): 表示用の文字起こし結果のリスト。
        word_vis_data (list): 単語レベルのタイムスタンプのリスト。

    Returns:
        tuple: 各ファイルのダウンロードボタンの更新情報を含むタプル。
    """
    try:
        csv_headers = ["Start (s)", "End (s)", "Segment"]
        csv_file_path = Path(session_dir, f"transcription_{audio_name}.csv")
        with open(csv_file_path, 'w', newline='', encoding='utf-8') as f:
            writer = csv.writer(f)
            writer.writerow(csv_headers)
            writer.writerows(vis_data)
        print(f"CSV transcript saved to temporary file: {csv_file_path}")

        srt_file_path = Path(session_dir, f"transcription_{audio_name}.srt")
        vtt_file_path = Path(session_dir, f"transcription_{audio_name}.vtt")
        json_file_path = Path(session_dir, f"transcription_{audio_name}.json")
        write_srt(vis_data, srt_file_path)
        write_vtt(vis_data, word_vis_data, vtt_file_path)
        write_json(vis_data, word_vis_data, json_file_path)
        print(f"SRT, VTT, JSON transcript saved to temporary files: {srt_file_path}, {vtt_file_path}, {json_file_path}")

        lrc_file_path = Path(session_dir, f"transcription_{audio_name}.lrc")
        write_lrc(vis_data, lrc_file_path)
        print(f"LRC transcript saved to temporary file: {lrc_file_path}")

        return (
            gr.DownloadButton(value=csv_file_path.as_posix(), visible=True),
            gr.DownloadButton(value=srt_file_path.as_posix(), visible=True),
            gr.DownloadButton(value=vtt_file_path.as_posix(), visible=True),
            gr.DownloadButton(value=json_file_path.as_posix(), visible=True),
            gr.DownloadButton(value=lrc_file_path.as_posix(), visible=True)
        )
    except Exception as e:
        gr.Error(f"Failed to create transcript files: {e}", duration=None)
        print(f"Error writing transcript files: {e}")
        return tuple([gr.DownloadButton(visible=False)] * 5)

def split_audio_with_overlap(audio_path: str, session_dir: str, chunk_length_sec: int = 3600, overlap_sec: int = 30) -> List[str]:
    """
    音声ファイルをchunk_length_secごとにoverlap_secのオーバーラップ付きで分割し、
    分割ファイルのパスリストを返す。
    """
    audio = AudioSegment.from_file(audio_path)
    duration = audio.duration_seconds
    chunk_paths = []
    start = 0
    chunk_idx = 0
    while start < duration:
        end = min(start + chunk_length_sec, duration)
        # オーバーラップを考慮
        chunk_start = max(0, start - (overlap_sec if start > 0 else 0))
        chunk_end = min(end + (overlap_sec if end < duration else 0), duration)
        chunk = audio[chunk_start * 1000:chunk_end * 1000]
        chunk_path = Path(session_dir, f"chunk_{chunk_idx:03d}.wav").as_posix()
        chunk.export(chunk_path, format="wav")
        chunk_paths.append(chunk_path)
        start += chunk_length_sec
        chunk_idx += 1
    return chunk_paths

@spaces.GPU
def get_transcripts_and_raw_times(audio_path, session_dir):
    """
    オーディオファイルを処理し、文字起こし結果を生成する。
    3時間を超える場合は60分ごとに分割し、オーバーラップ付きでASRを実行してマージする。
    """
    if not audio_path:
        gr.Error("No audio file path provided for transcription.", duration=None)
        return [], [], [], None, gr.DownloadButton(visible=False), gr.DownloadButton(visible=False), gr.DownloadButton(visible=False), gr.DownloadButton(visible=False), gr.DownloadButton(visible=False)

    audio_name = Path(audio_path).stem
    processed_audio_path = None
    temp_chunk_paths = []

    try:
        # オーディオの前処理
        transcribe_path, info_path_name, duration_sec = preprocess_audio(audio_path, session_dir)
        if not transcribe_path or not duration_sec:
            return [], [], [], audio_path, gr.DownloadButton(visible=False), gr.DownloadButton(visible=False), gr.DownloadButton(visible=False), gr.DownloadButton(visible=False), gr.DownloadButton(visible=False)

        processed_audio_path = transcribe_path if transcribe_path != audio_path else None

        # 3時間超の場合は分割して逐次ASR
        if duration_sec > 10800:
            chunk_paths = split_audio_with_overlap(transcribe_path, session_dir, chunk_length_sec=3600, overlap_sec=30)
            temp_chunk_paths = chunk_paths.copy()
            all_vis_data = []
            all_raw_times_data = []
            all_word_vis_data = []
            offset = 0.0
            prev_end = 0.0
            for i, chunk_path in enumerate(chunk_paths):
                chunk_audio = AudioSegment.from_file(chunk_path)
                chunk_duration = chunk_audio.duration_seconds
                # ASR実行
                result = transcribe_audio(chunk_path, model, chunk_duration, device)
                if not result:
                    continue
                vis_data, raw_times_data, word_vis_data = result
                # タイムスタンプを全体のオフセットに合わせて補正
                vis_data_offset = []
                raw_times_data_offset = []
                word_vis_data_offset = []
                for row in vis_data:
                    s, e, seg = float(row[0]), float(row[1]), row[2]
                    vis_data_offset.append([f"{s+offset:.2f}", f"{e+offset:.2f}", seg])
                for row in raw_times_data:
                    s, e = float(row[0]), float(row[1])
                    raw_times_data_offset.append([s+offset, e+offset])
                for row in word_vis_data:
                    s, e, w = float(row[0]), float(row[1]), row[2]
                    word_vis_data_offset.append([f"{s+offset:.2f}", f"{e+offset:.2f}", w])
                # オーバーラップ部分の重複除去(単純に前回のend以降のみ追加)
                vis_data_offset = [row for row in vis_data_offset if float(row[0]) >= prev_end]
                raw_times_data_offset = [row for row in raw_times_data_offset if row[0] >= prev_end]
                word_vis_data_offset = [row for row in word_vis_data_offset if float(row[0]) >= prev_end]
                if vis_data_offset:
                    prev_end = float(vis_data_offset[-1][1])
                all_vis_data.extend(vis_data_offset)
                all_raw_times_data.extend(raw_times_data_offset)
                all_word_vis_data.extend(word_vis_data_offset)
                offset += chunk_duration - (30 if i < len(chunk_paths)-1 else 0)
            # ファイルの保存
            button_updates = save_transcripts(session_dir, audio_name, all_vis_data, all_word_vis_data)
            # 一時分割ファイル削除
            for p in temp_chunk_paths:
                try:
                    os.remove(p)
                except Exception:
                    pass
            return (
                all_vis_data,
                all_raw_times_data,
                all_word_vis_data,
                audio_path,
                *button_updates
            )
        else:
            # 3時間以内は従来通り
            result = transcribe_audio(transcribe_path, model, duration_sec, device)
            if not result:
                return [], [], [], audio_path, gr.DownloadButton(visible=False), gr.DownloadButton(visible=False), gr.DownloadButton(visible=False), gr.DownloadButton(visible=False), gr.DownloadButton(visible=False)
            vis_data, raw_times_data, word_vis_data = result
            button_updates = save_transcripts(session_dir, audio_name, vis_data, word_vis_data)
            return (
                vis_data,
                raw_times_data,
                word_vis_data,
                audio_path,
                *button_updates
            )
    finally:
        if processed_audio_path and os.path.exists(processed_audio_path):
            try:
                os.remove(processed_audio_path)
                print(f"Temporary audio file {processed_audio_path} removed.")
            except Exception as e:
                print(f"Error removing temporary audio file {processed_audio_path}: {e}")
        # 分割ファイルの掃除
        for p in temp_chunk_paths:
            if os.path.exists(p):
                try:
                    os.remove(p)
                except Exception:
                    pass

def play_segment(evt: gr.SelectData, raw_ts_list, current_audio_path):
    if not isinstance(raw_ts_list, list):
        print(f"Warning: raw_ts_list is not a list ({type(raw_ts_list)}). Cannot play segment.")
        return gr.Audio(value=None, label="Selected Segment")

    if not current_audio_path:
        print("No audio path available to play segment from.")
        return gr.Audio(value=None, label="Selected Segment")

    selected_index = evt.index[0]

    if selected_index < 0 or selected_index >= len(raw_ts_list):
        print(f"Invalid index {selected_index} selected for list of length {len(raw_ts_list)}.")
        return gr.Audio(value=None, label="Selected Segment")

    if not isinstance(raw_ts_list[selected_index], (list, tuple)) or len(raw_ts_list[selected_index]) != 2:
        print(f"Warning: Data at index {selected_index} is not in the expected format [start, end].")
        return gr.Audio(value=None, label="Selected Segment")

    start_time_s, end_time_s = raw_ts_list[selected_index]
    print(f"Attempting to play segment: {current_audio_path} from {start_time_s:.2f}s to {end_time_s:.2f}s")
    segment_data = get_audio_segment(current_audio_path, start_time_s, end_time_s)

    if segment_data:
        print("Segment data retrieved successfully.")
        return gr.Audio(value=segment_data, autoplay=True, label=f"Segment: {start_time_s:.2f}s - {end_time_s:.2f}s", interactive=False)
    else:
        print("Failed to get audio segment data.")
        return gr.Audio(value=None, label="Selected Segment")

def write_srt(segments, path):
    def sec2srt(t):
        h, rem = divmod(int(float(t)), 3600)
        m, s = divmod(rem, 60)
        ms = int((float(t) - int(float(t))) * 1000)
        return f"{h:02}:{m:02}:{s:02},{ms:03}"
    with open(path, "w", encoding="utf-8") as f:
        for i, seg in enumerate(segments, 1):
            f.write(f"{i}\n{sec2srt(seg[0])} --> {sec2srt(seg[1])}\n{seg[2]}\n\n")

def write_vtt(segments, words, path):
    def sec2vtt(t):
        h, rem = divmod(int(float(t)), 3600)
        m, s = divmod(rem, 60)
        ms = int((float(t) - int(float(t))) * 1000)
        return f"{h:02}:{m:02}:{s:02}.{ms:03}"
    
    with open(path, "w", encoding="utf-8") as f:
        f.write("WEBVTT\n\n")
        
        word_idx = 0
        for seg in segments:
            s_start = float(seg[0])
            s_end = float(seg[1])
            s_text = seg[2]
            
            # このセグメントに含まれる単語を抽出
            segment_words = []
            while word_idx < len(words):
                w = words[word_idx]
                w_start = float(w[0])
                w_end = float(w[1])
                if w_start >= s_start and w_end <= s_end:
                    segment_words.append(w)
                    word_idx += 1
                elif w_end < s_start:
                    word_idx += 1
                else:
                    break
            
            # 各単語ごとにタイムスタンプを生成
            for i, w in enumerate(segment_words):
                w_start = float(w[0])
                w_end = float(w[1])
                w_text = w[2]
                
                # 現在の単語を強調表示し、他の単語は通常表示
                colored_text = ""
                for j, other_w in enumerate(segment_words):
                    if j == i:
                        colored_text += f"<c.yellow><b>{other_w[2]}</b></c> "
                    else:
                        colored_text += f"{other_w[2]} "
                
                f.write(f"{sec2vtt(w_start)} --> {sec2vtt(w_end)}\n{colored_text.strip()}\n\n")

def write_json(segments, words, path):
    result = {"segments": []}
    word_idx = 0
    for s in segments:
        s_start = float(s[0])
        s_end = float(s[1])
        s_text = s[2]
        word_list = []
        while word_idx < len(words):
            w = words[word_idx]
            w_start = float(w[0])
            w_end = float(w[1])
            if w_start >= s_start and w_end <= s_end:
                word_list.append({"start": w_start, "end": w_end, "word": w[2]})
                word_idx += 1
            elif w_end < s_start:
                word_idx += 1
            else:
                break
        result["segments"].append({
            "start": s_start,
            "end": s_end,
            "text": s_text,
            "words": word_list
        })
    with open(path, "w", encoding="utf-8") as f:
        json.dump(result, f, ensure_ascii=False, indent=2)

def write_lrc(segments, path):
    def sec2lrc(t):
        m, s = divmod(float(t), 60)
        return f"[{int(m):02}:{s:05.2f}]"
    with open(path, "w", encoding="utf-8") as f:
        for seg in segments:
            f.write(f"{sec2lrc(seg[0])}{seg[2]}\n")

article = (
    "<p style='font-size: 1.1em;'>"
    "This demo showcases <code><a href='https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2'>parakeet-tdt-0.6b-v2</a></code>, a 600M-parameter model for high-quality English ASR.<br>"
    "<em>Now optimised for long recordings (hours) with automatic chunking & memory control.</em>"
    "</p>"
    "<p><strong style='color: red; font-size: 1.2em;'>Key Features:</strong></p>"
    "<ul style='font-size: 1.1em;'>"
    "    <li>Automatic punctuation and capitalization</li>"
    "    <li>Accurate word-level timestamps (click on a segment in the table below to play it!)</li>"
    "    <li>Character-level timestamps now available in the 'Character View' tab.</li>"
    "    <li>Efficiently transcribes long audio segments (<strong>updated to support upto 3 hours</strong>) <small>(For even longer audios, see <a href='https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_chunked_inference/rnnt/speech_to_text_buffered_infer_rnnt.py' target='_blank'>this script</a>)</small></li>"
    "    <li>Robust performance on spoken numbers, and song lyrics transcription </li>"
    "</ul>"
    "<p style='font-size: 1.1em;'>"
    "This model is <strong>available for commercial and non-commercial use</strong>."
    "</p>"
    "<p style='text-align: center;'>"
    "<a href='https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2' target='_blank'>🎙️ Learn more about the Model</a> | "
    "<a href='https://arxiv.org/abs/2305.05084' target='_blank'>📄 Fast Conformer paper</a> | "
    "<a href='https://arxiv.org/abs/2304.06795' target='_blank'>📚 TDT paper</a> | "
    "<a href='https://github.com/NVIDIA/NeMo' target='_blank'>🧑‍💻 NeMo Repository</a>"
    "</p>"
)

examples = [
    ["data/example-yt_saTD1u8PorI.mp3"],
]

nvidia_theme = gr_themes.Default(
    primary_hue=gr_themes.Color(
        c50="#E6F1D9", c100="#CEE3B3", c200="#B5D58C", c300="#9CC766",
        c400="#84B940", c500="#76B900", c600="#68A600", c700="#5A9200",
        c800="#4C7E00", c900="#3E6A00", c950="#2F5600"
    ),
    neutral_hue="gray",
    font=[gr_themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"],
).set()

with gr.Blocks(theme=nvidia_theme) as demo:
    model_display_name = MODEL_NAME.split('/')[-1] if '/' in MODEL_NAME else MODEL_NAME
    gr.Markdown(f"<h1 style='text-align: center; margin: 0 auto;'>Speech Transcription&nbsp;with&nbsp;{model_display_name} <span style='font-size:0.6em;'>(Long-audio&nbsp;ready)</span></h1>")
    gr.HTML(article)

    current_audio_path_state = gr.State(None)
    raw_timestamps_list_state = gr.State([])
    session_dir_state = gr.State()
    demo.load(start_session, outputs=[session_dir_state])

    with gr.Tabs():
        with gr.TabItem("Audio File"):
            file_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio File")
            gr.Examples(examples=examples, inputs=[file_input], label="Example Audio Files (Click to Load)")
            file_transcribe_btn = gr.Button("Transcribe Uploaded File", variant="primary")
        
        with gr.TabItem("Microphone"):
            mic_input = gr.Audio(sources=["microphone"], type="filepath", label="Record Audio")
            mic_transcribe_btn = gr.Button("Transcribe Microphone Input", variant="primary")

    gr.Markdown("---")
    gr.Markdown("<p><strong style='color: #FF0000; font-size: 1.2em;'>Transcription Results</strong></p>")

    download_btn = gr.DownloadButton(label="Download Segment Transcript (CSV)", visible=False)
    srt_btn = gr.DownloadButton(label="Download SRT", visible=False)
    vtt_btn = gr.DownloadButton(label="Download VTT", visible=False)
    json_btn = gr.DownloadButton(label="Download JSON", visible=False)
    lrc_btn = gr.DownloadButton(label="Download LRC", visible=False)

    with gr.Tabs():
        with gr.TabItem("Segment View (Click row to play segment)"):
            vis_timestamps_df = gr.DataFrame(
                headers=["Start (s)", "End (s)", "Segment"],
                datatype=["number", "number", "str"],
                wrap=True,
            )
            selected_segment_player = gr.Audio(label="Selected Segment", interactive=False)
        
        with gr.TabItem("Word View"):
            word_vis_df = gr.DataFrame(
                headers=["Start (s)", "End (s)", "Word"],
                datatype=["number", "number", "str"],
                wrap=False,
            )

    mic_transcribe_btn.click(
        fn=get_transcripts_and_raw_times,
        inputs=[mic_input, session_dir_state],
        outputs=[vis_timestamps_df, raw_timestamps_list_state, word_vis_df, current_audio_path_state, download_btn, srt_btn, vtt_btn, json_btn, lrc_btn],
        api_name="transcribe_mic"
    )

    file_transcribe_btn.click(
        fn=get_transcripts_and_raw_times,
        inputs=[file_input, session_dir_state],
        outputs=[vis_timestamps_df, raw_timestamps_list_state, word_vis_df, current_audio_path_state, download_btn, srt_btn, vtt_btn, json_btn, lrc_btn],
        api_name="transcribe_file"
    )

    vis_timestamps_df.select(
        fn=play_segment,
        inputs=[raw_timestamps_list_state, current_audio_path_state],
        outputs=[selected_segment_player],
    )

    demo.unload(end_session)

if __name__ == "__main__":
    print("Launching Gradio Demo...")
    # タイムアウト対策としてキューサイズと同時実行数を抑制
    demo.queue(
        max_size=5,
        default_concurrency_limit=1
    )
    demo.launch()