Spaces:
Runtime error
Runtime error
Added files
Browse files- README.md +2 -12
- app.py +21 -0
- ingest.py +43 -0
- requirements.txt +10 -0
- retrieve.py +73 -0
README.md
CHANGED
|
@@ -1,12 +1,2 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
emoji: 📈
|
| 4 |
-
colorFrom: green
|
| 5 |
-
colorTo: yellow
|
| 6 |
-
sdk: streamlit
|
| 7 |
-
sdk_version: 1.29.0
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
---
|
| 11 |
-
|
| 12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
+
# Retrieval-Augmented-Generation-RAG-
|
| 2 |
+
Simple RAG using your own pdfs without any GPU!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from retrieve import qa_chain, process_llm_response
|
| 2 |
+
import streamlit as st
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def main():
|
| 6 |
+
qa = qa_chain()
|
| 7 |
+
st.title('NCERT-GPT')
|
| 8 |
+
text_query = st.text_area('Ask any question from NCERT 11th and 12th Chemistry Texts!')
|
| 9 |
+
generate_response_btn = st.button('Run RAG')
|
| 10 |
+
|
| 11 |
+
st.subheader('Response')
|
| 12 |
+
if generate_response_btn and text_query is not None:
|
| 13 |
+
with st.spinner('Generating Response. Please wait...'):
|
| 14 |
+
text_response = qa(text_query)
|
| 15 |
+
if text_response:
|
| 16 |
+
st.write(text_response)
|
| 17 |
+
else:
|
| 18 |
+
st.error('Failed to get response')
|
| 19 |
+
|
| 20 |
+
if __name__ == "__main__":
|
| 21 |
+
main()
|
ingest.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#importing dependencies
|
| 2 |
+
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
| 3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 4 |
+
from langchain.vectorstores import Chroma
|
| 5 |
+
from langchain.document_loaders import PyPDFDirectoryLoader
|
| 6 |
+
import time
|
| 7 |
+
|
| 8 |
+
#loading data
|
| 9 |
+
|
| 10 |
+
loader = PyPDFDirectoryLoader('data/')
|
| 11 |
+
documents = loader.load()
|
| 12 |
+
print(len(documents))
|
| 13 |
+
|
| 14 |
+
#splitting
|
| 15 |
+
|
| 16 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size = 10000, chunk_overlap = 500)
|
| 17 |
+
text_chunks = splitter.split_documents(documents)
|
| 18 |
+
print(len(text_chunks))
|
| 19 |
+
|
| 20 |
+
#loading HuggingFaceBGE embeddings
|
| 21 |
+
|
| 22 |
+
model_name = "BAAI/bge-small-en"
|
| 23 |
+
model_kwargs = {"device": "cpu"}
|
| 24 |
+
encode_kwargs = {"normalize_embeddings": True}
|
| 25 |
+
embeddings = HuggingFaceBgeEmbeddings(
|
| 26 |
+
model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
print('Embeddings loaded!')
|
| 30 |
+
|
| 31 |
+
# creating NCERT Textbooks vector database.
|
| 32 |
+
|
| 33 |
+
t1 = time.time()
|
| 34 |
+
persist_directory = 'dbname'
|
| 35 |
+
vectordb = Chroma.from_documents(
|
| 36 |
+
documents = text_chunks,
|
| 37 |
+
embedding = embeddings,
|
| 38 |
+
collection_metadata = {"hnsw:space": "cosine"},
|
| 39 |
+
persist_directory = persist_directory
|
| 40 |
+
)
|
| 41 |
+
t2 = time.time()
|
| 42 |
+
print('Time taken for building db : ', (t2 - t1))
|
| 43 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
accelerate
|
| 2 |
+
chromadb
|
| 3 |
+
huggingface-hub
|
| 4 |
+
langchain
|
| 5 |
+
pypdf
|
| 6 |
+
sentence-transformers
|
| 7 |
+
sentencepiece
|
| 8 |
+
streamlit
|
| 9 |
+
torch
|
| 10 |
+
transformers
|
retrieve.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, pipeline
|
| 2 |
+
from langchain.llms import HuggingFaceHub, HuggingFacePipeline
|
| 3 |
+
from dotenv import load_dotenv
|
| 4 |
+
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
| 5 |
+
from langchain.vectorstores import Chroma
|
| 6 |
+
from langchain.chains import RetrievalQA
|
| 7 |
+
import textwrap
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def load_vector_store():
|
| 12 |
+
model_name = "BAAI/bge-small-en"
|
| 13 |
+
model_kwargs = {"device": "cpu"}
|
| 14 |
+
encode_kwargs = {"normalize_embeddings": True}
|
| 15 |
+
embeddings = HuggingFaceBgeEmbeddings(
|
| 16 |
+
model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs
|
| 17 |
+
)
|
| 18 |
+
print('Embeddings loaded!')
|
| 19 |
+
load_vector_store = Chroma(persist_directory = 'vector stores/ncertdb', embedding_function = embeddings)
|
| 20 |
+
print('Vector store loaded!')
|
| 21 |
+
|
| 22 |
+
retriever = load_vector_store.as_retriever(
|
| 23 |
+
search_kwargs = {"k" : 2},
|
| 24 |
+
)
|
| 25 |
+
return retriever
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
#model
|
| 29 |
+
def load_model():
|
| 30 |
+
load_dotenv()
|
| 31 |
+
repo_id = 'llmware/bling-sheared-llama-1.3b-0.1'
|
| 32 |
+
llm = HuggingFaceHub(
|
| 33 |
+
repo_id = repo_id,
|
| 34 |
+
model_kwargs = {'max_new_tokens' : 100}
|
| 35 |
+
)
|
| 36 |
+
print(llm('HI!'))
|
| 37 |
+
return llm
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def qa_chain():
|
| 41 |
+
retriever = load_vector_store()
|
| 42 |
+
llm = load_model()
|
| 43 |
+
qa = RetrievalQA.from_chain_type(
|
| 44 |
+
llm = llm,
|
| 45 |
+
chain_type = 'stuff',
|
| 46 |
+
retriever = retriever,
|
| 47 |
+
return_source_documents = True,
|
| 48 |
+
verbose = True
|
| 49 |
+
)
|
| 50 |
+
return qa
|
| 51 |
+
|
| 52 |
+
def wrap_text_preserve_newlines(text, width=110):
|
| 53 |
+
# Split the input text into lines based on newline characters
|
| 54 |
+
lines = text.split('\n')
|
| 55 |
+
|
| 56 |
+
# Wrap each line individually
|
| 57 |
+
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
|
| 58 |
+
|
| 59 |
+
# Join the wrapped lines back together using newline characters
|
| 60 |
+
wrapped_text = '\n'.join(wrapped_lines)
|
| 61 |
+
|
| 62 |
+
return wrapped_text
|
| 63 |
+
|
| 64 |
+
def process_llm_response(llm_response):
|
| 65 |
+
print(wrap_text_preserve_newlines(llm_response['result']))
|
| 66 |
+
print('\n\nSources:')
|
| 67 |
+
for source in llm_response["source_documents"]:
|
| 68 |
+
print(source.metadata['source'])
|
| 69 |
+
|
| 70 |
+
qa = qa_chain()
|
| 71 |
+
|
| 72 |
+
response = qa('What are types of Embedded system?')
|
| 73 |
+
process_llm_response(response)
|