File size: 18,473 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
# Natural Language Toolkit: TIMIT Corpus Reader
#
# Copyright (C) 2001-2007 NLTK Project
# Author: Haejoong Lee <[email protected]>
#         Steven Bird <[email protected]>
#         Jacob Perkins <[email protected]>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT

# [xx] this docstring is out-of-date:
"""

Read tokens, phonemes and audio data from the NLTK TIMIT Corpus.



This corpus contains selected portion of the TIMIT corpus.



 - 16 speakers from 8 dialect regions

 - 1 male and 1 female from each dialect region

 - total 130 sentences (10 sentences per speaker.  Note that some

   sentences are shared among other speakers, especially sa1 and sa2

   are spoken by all speakers.)

 - total 160 recording of sentences (10 recordings per speaker)

 - audio format: NIST Sphere, single channel, 16kHz sampling,

   16 bit sample, PCM encoding





Module contents

===============



The timit corpus reader provides 4 functions and 4 data items.



 - utterances



   List of utterances in the corpus.  There are total 160 utterances,

   each of which corresponds to a unique utterance of a speaker.

   Here's an example of an utterance identifier in the list::



       dr1-fvmh0/sx206

         - _----  _---

         | |  |   | |

         | |  |   | |

         | |  |   | `--- sentence number

         | |  |   `----- sentence type (a:all, i:shared, x:exclusive)

         | |  `--------- speaker ID

         | `------------ sex (m:male, f:female)

         `-------------- dialect region (1..8)



 - speakers



   List of speaker IDs.  An example of speaker ID::



       dr1-fvmh0



   Note that if you split an item ID with colon and take the first element of

   the result, you will get a speaker ID.



       >>> itemid = 'dr1-fvmh0/sx206'

       >>> spkrid , sentid = itemid.split('/')

       >>> spkrid

       'dr1-fvmh0'



   The second element of the result is a sentence ID.



 - dictionary()



   Phonetic dictionary of words contained in this corpus.  This is a Python

   dictionary from words to phoneme lists.



 - spkrinfo()



   Speaker information table.  It's a Python dictionary from speaker IDs to

   records of 10 fields.  Speaker IDs the same as the ones in timie.speakers.

   Each record is a dictionary from field names to values, and the fields are

   as follows::



     id         speaker ID as defined in the original TIMIT speaker info table

     sex        speaker gender (M:male, F:female)

     dr         speaker dialect region (1:new england, 2:northern,

                3:north midland, 4:south midland, 5:southern, 6:new york city,

                7:western, 8:army brat (moved around))

     use        corpus type (TRN:training, TST:test)

                in this sample corpus only TRN is available

     recdate    recording date

     birthdate  speaker birth date

     ht         speaker height

     race       speaker race (WHT:white, BLK:black, AMR:american indian,

                SPN:spanish-american, ORN:oriental,???:unknown)

     edu        speaker education level (HS:high school, AS:associate degree,

                BS:bachelor's degree (BS or BA), MS:master's degree (MS or MA),

                PHD:doctorate degree (PhD,JD,MD), ??:unknown)

     comments   comments by the recorder



The 4 functions are as follows.



 - tokenized(sentences=items, offset=False)



   Given a list of items, returns an iterator of a list of word lists,

   each of which corresponds to an item (sentence).  If offset is set to True,

   each element of the word list is a tuple of word(string), start offset and

   end offset, where offset is represented as a number of 16kHz samples.



 - phonetic(sentences=items, offset=False)



   Given a list of items, returns an iterator of a list of phoneme lists,

   each of which corresponds to an item (sentence).  If offset is set to True,

   each element of the phoneme list is a tuple of word(string), start offset

   and end offset, where offset is represented as a number of 16kHz samples.



 - audiodata(item, start=0, end=None)



   Given an item, returns a chunk of audio samples formatted into a string.

   When the function is called, if start and end are omitted, the entire

   samples of the recording will be returned.  If only end is omitted,

   samples from the start offset to the end of the recording will be returned.



 - play(data)



   Play the given audio samples. The audio samples can be obtained from the

   timit.audiodata function.



"""
import sys
import time

from nltk.corpus.reader.api import *
from nltk.internals import import_from_stdlib
from nltk.tree import Tree


class TimitCorpusReader(CorpusReader):
    """

    Reader for the TIMIT corpus (or any other corpus with the same

    file layout and use of file formats).  The corpus root directory

    should contain the following files:



      - timitdic.txt: dictionary of standard transcriptions

      - spkrinfo.txt: table of speaker information



    In addition, the root directory should contain one subdirectory

    for each speaker, containing three files for each utterance:



      - <utterance-id>.txt: text content of utterances

      - <utterance-id>.wrd: tokenized text content of utterances

      - <utterance-id>.phn: phonetic transcription of utterances

      - <utterance-id>.wav: utterance sound file

    """

    _FILE_RE = r"(\w+-\w+/\w+\.(phn|txt|wav|wrd))|" + r"timitdic\.txt|spkrinfo\.txt"
    """A regexp matching fileids that are used by this corpus reader."""
    _UTTERANCE_RE = r"\w+-\w+/\w+\.txt"

    def __init__(self, root, encoding="utf8"):
        """

        Construct a new TIMIT corpus reader in the given directory.

        :param root: The root directory for this corpus.

        """
        # Ensure that wave files don't get treated as unicode data:
        if isinstance(encoding, str):
            encoding = [(r".*\.wav", None), (".*", encoding)]

        CorpusReader.__init__(
            self, root, find_corpus_fileids(root, self._FILE_RE), encoding=encoding
        )

        self._utterances = [
            name[:-4] for name in find_corpus_fileids(root, self._UTTERANCE_RE)
        ]
        """A list of the utterance identifiers for all utterances in

        this corpus."""

        self._speakerinfo = None
        self._root = root
        self.speakers = sorted({u.split("/")[0] for u in self._utterances})

    def fileids(self, filetype=None):
        """

        Return a list of file identifiers for the files that make up

        this corpus.



        :param filetype: If specified, then ``filetype`` indicates that

            only the files that have the given type should be

            returned.  Accepted values are: ``txt``, ``wrd``, ``phn``,

            ``wav``, or ``metadata``,

        """
        if filetype is None:
            return CorpusReader.fileids(self)
        elif filetype in ("txt", "wrd", "phn", "wav"):
            return [f"{u}.{filetype}" for u in self._utterances]
        elif filetype == "metadata":
            return ["timitdic.txt", "spkrinfo.txt"]
        else:
            raise ValueError("Bad value for filetype: %r" % filetype)

    def utteranceids(

        self, dialect=None, sex=None, spkrid=None, sent_type=None, sentid=None

    ):
        """

        :return: A list of the utterance identifiers for all

            utterances in this corpus, or for the given speaker, dialect

            region, gender, sentence type, or sentence number, if

            specified.

        """
        if isinstance(dialect, str):
            dialect = [dialect]
        if isinstance(sex, str):
            sex = [sex]
        if isinstance(spkrid, str):
            spkrid = [spkrid]
        if isinstance(sent_type, str):
            sent_type = [sent_type]
        if isinstance(sentid, str):
            sentid = [sentid]

        utterances = self._utterances[:]
        if dialect is not None:
            utterances = [u for u in utterances if u[2] in dialect]
        if sex is not None:
            utterances = [u for u in utterances if u[4] in sex]
        if spkrid is not None:
            utterances = [u for u in utterances if u[:9] in spkrid]
        if sent_type is not None:
            utterances = [u for u in utterances if u[11] in sent_type]
        if sentid is not None:
            utterances = [u for u in utterances if u[10:] in spkrid]
        return utterances

    def transcription_dict(self):
        """

        :return: A dictionary giving the 'standard' transcription for

            each word.

        """
        _transcriptions = {}
        with self.open("timitdic.txt") as fp:
            for line in fp:
                if not line.strip() or line[0] == ";":
                    continue
                m = re.match(r"\s*(\S+)\s+/(.*)/\s*$", line)
                if not m:
                    raise ValueError("Bad line: %r" % line)
                _transcriptions[m.group(1)] = m.group(2).split()
        return _transcriptions

    def spkrid(self, utterance):
        return utterance.split("/")[0]

    def sentid(self, utterance):
        return utterance.split("/")[1]

    def utterance(self, spkrid, sentid):
        return f"{spkrid}/{sentid}"

    def spkrutteranceids(self, speaker):
        """

        :return: A list of all utterances associated with a given

            speaker.

        """
        return [
            utterance
            for utterance in self._utterances
            if utterance.startswith(speaker + "/")
        ]

    def spkrinfo(self, speaker):
        """

        :return: A dictionary mapping .. something.

        """
        if speaker in self._utterances:
            speaker = self.spkrid(speaker)

        if self._speakerinfo is None:
            self._speakerinfo = {}
            with self.open("spkrinfo.txt") as fp:
                for line in fp:
                    if not line.strip() or line[0] == ";":
                        continue
                    rec = line.strip().split(None, 9)
                    key = f"dr{rec[2]}-{rec[1].lower()}{rec[0].lower()}"
                    self._speakerinfo[key] = SpeakerInfo(*rec)

        return self._speakerinfo[speaker]

    def phones(self, utterances=None):
        results = []
        for fileid in self._utterance_fileids(utterances, ".phn"):
            with self.open(fileid) as fp:
                for line in fp:
                    if line.strip():
                        results.append(line.split()[-1])
        return results

    def phone_times(self, utterances=None):
        """

        offset is represented as a number of 16kHz samples!

        """
        results = []
        for fileid in self._utterance_fileids(utterances, ".phn"):
            with self.open(fileid) as fp:
                for line in fp:
                    if line.strip():
                        results.append(
                            (
                                line.split()[2],
                                int(line.split()[0]),
                                int(line.split()[1]),
                            )
                        )
        return results

    def words(self, utterances=None):
        results = []
        for fileid in self._utterance_fileids(utterances, ".wrd"):
            with self.open(fileid) as fp:
                for line in fp:
                    if line.strip():
                        results.append(line.split()[-1])
        return results

    def word_times(self, utterances=None):
        results = []
        for fileid in self._utterance_fileids(utterances, ".wrd"):
            with self.open(fileid) as fp:
                for line in fp:
                    if line.strip():
                        results.append(
                            (
                                line.split()[2],
                                int(line.split()[0]),
                                int(line.split()[1]),
                            )
                        )
        return results

    def sents(self, utterances=None):
        results = []
        for fileid in self._utterance_fileids(utterances, ".wrd"):
            with self.open(fileid) as fp:
                results.append([line.split()[-1] for line in fp if line.strip()])
        return results

    def sent_times(self, utterances=None):
        # TODO: Check this
        return [
            (
                line.split(None, 2)[-1].strip(),
                int(line.split()[0]),
                int(line.split()[1]),
            )
            for fileid in self._utterance_fileids(utterances, ".txt")
            for line in self.open(fileid)
            if line.strip()
        ]

    def phone_trees(self, utterances=None):
        if utterances is None:
            utterances = self._utterances
        if isinstance(utterances, str):
            utterances = [utterances]

        trees = []
        for utterance in utterances:
            word_times = self.word_times(utterance)
            phone_times = self.phone_times(utterance)
            sent_times = self.sent_times(utterance)

            while sent_times:
                (sent, sent_start, sent_end) = sent_times.pop(0)
                trees.append(Tree("S", []))
                while (
                    word_times and phone_times and phone_times[0][2] <= word_times[0][1]
                ):
                    trees[-1].append(phone_times.pop(0)[0])
                while word_times and word_times[0][2] <= sent_end:
                    (word, word_start, word_end) = word_times.pop(0)
                    trees[-1].append(Tree(word, []))
                    while phone_times and phone_times[0][2] <= word_end:
                        trees[-1][-1].append(phone_times.pop(0)[0])
                while phone_times and phone_times[0][2] <= sent_end:
                    trees[-1].append(phone_times.pop(0)[0])
        return trees

    # [xx] NOTE: This is currently broken -- we're assuming that the
    # fileids are WAV fileids (aka RIFF), but they're actually NIST SPHERE
    # fileids.
    def wav(self, utterance, start=0, end=None):
        # nltk.chunk conflicts with the stdlib module 'chunk'
        wave = import_from_stdlib("wave")

        w = wave.open(self.open(utterance + ".wav"), "rb")

        if end is None:
            end = w.getnframes()

        # Skip past frames before start, then read the frames we want
        w.readframes(start)
        frames = w.readframes(end - start)

        # Open a new temporary file -- the wave module requires
        # an actual file, and won't work w/ stringio. :(
        tf = tempfile.TemporaryFile()
        out = wave.open(tf, "w")

        # Write the parameters & data to the new file.
        out.setparams(w.getparams())
        out.writeframes(frames)
        out.close()

        # Read the data back from the file, and return it.  The
        # file will automatically be deleted when we return.
        tf.seek(0)
        return tf.read()

    def audiodata(self, utterance, start=0, end=None):
        assert end is None or end > start
        headersize = 44
        with self.open(utterance + ".wav") as fp:
            if end is None:
                data = fp.read()
            else:
                data = fp.read(headersize + end * 2)
        return data[headersize + start * 2 :]

    def _utterance_fileids(self, utterances, extension):
        if utterances is None:
            utterances = self._utterances
        if isinstance(utterances, str):
            utterances = [utterances]
        return [f"{u}{extension}" for u in utterances]

    def play(self, utterance, start=0, end=None):
        """

        Play the given audio sample.



        :param utterance: The utterance id of the sample to play

        """
        # Method 1: os audio dev.
        try:
            import ossaudiodev

            try:
                dsp = ossaudiodev.open("w")
                dsp.setfmt(ossaudiodev.AFMT_S16_LE)
                dsp.channels(1)
                dsp.speed(16000)
                dsp.write(self.audiodata(utterance, start, end))
                dsp.close()
            except OSError as e:
                print(
                    (
                        "can't acquire the audio device; please "
                        "activate your audio device."
                    ),
                    file=sys.stderr,
                )
                print("system error message:", str(e), file=sys.stderr)
            return
        except ImportError:
            pass

        # Method 2: pygame
        try:
            # FIXME: this won't work under python 3
            import pygame.mixer
            import StringIO

            pygame.mixer.init(16000)
            f = StringIO.StringIO(self.wav(utterance, start, end))
            pygame.mixer.Sound(f).play()
            while pygame.mixer.get_busy():
                time.sleep(0.01)
            return
        except ImportError:
            pass

        # Method 3: complain. :)
        print(
            ("you must install pygame or ossaudiodev " "for audio playback."),
            file=sys.stderr,
        )


class SpeakerInfo:
    def __init__(

        self, id, sex, dr, use, recdate, birthdate, ht, race, edu, comments=None

    ):
        self.id = id
        self.sex = sex
        self.dr = dr
        self.use = use
        self.recdate = recdate
        self.birthdate = birthdate
        self.ht = ht
        self.race = race
        self.edu = edu
        self.comments = comments

    def __repr__(self):
        attribs = "id sex dr use recdate birthdate ht race edu comments"
        args = [f"{attr}={getattr(self, attr)!r}" for attr in attribs.split()]
        return "SpeakerInfo(%s)" % (", ".join(args))


def read_timit_block(stream):
    """

    Block reader for timit tagged sentences, which are preceded by a sentence

    number that will be ignored.

    """
    line = stream.readline()
    if not line:
        return []
    n, sent = line.split(" ", 1)
    return [sent]