Spaces:
Runtime error
Runtime error
added model script
Browse files
mt5.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding:utf-8
|
| 2 |
+
"""
|
| 3 |
+
Filename: mt5.py
|
| 4 |
+
Author: @DvdNss
|
| 5 |
+
|
| 6 |
+
Created on 12/30/2021
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
from typing import List
|
| 10 |
+
|
| 11 |
+
from pytorch_lightning import LightningModule
|
| 12 |
+
from transformers import MT5ForConditionalGeneration, AutoTokenizer
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class MT5(LightningModule):
|
| 16 |
+
"""
|
| 17 |
+
Google MT5 transformer class.
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
def __init__(self, model_name_or_path: str = None):
|
| 21 |
+
"""
|
| 22 |
+
Initialize module.
|
| 23 |
+
|
| 24 |
+
:param model_name_or_path: model name
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
super().__init__()
|
| 28 |
+
|
| 29 |
+
# Load model and tokenizer
|
| 30 |
+
self.save_hyperparameters()
|
| 31 |
+
self.model = MT5ForConditionalGeneration.from_pretrained(
|
| 32 |
+
model_name_or_path) if model_name_or_path is not None else None
|
| 33 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name_or_path,
|
| 34 |
+
use_fast=True) if model_name_or_path is not None else None
|
| 35 |
+
|
| 36 |
+
def forward(self, **inputs):
|
| 37 |
+
"""
|
| 38 |
+
Forward inputs.
|
| 39 |
+
|
| 40 |
+
:param inputs: dictionary of inputs (input_ids, attention_mask, labels)
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
+
return self.model(**inputs)
|
| 44 |
+
|
| 45 |
+
def qa(self, batch: List[dict], max_length: int = 512, **kwargs):
|
| 46 |
+
"""
|
| 47 |
+
Question answering prediction.
|
| 48 |
+
|
| 49 |
+
:param batch: batch of dict {question: q, context: c}
|
| 50 |
+
:param max_length: max length of output
|
| 51 |
+
"""
|
| 52 |
+
|
| 53 |
+
# Transform inputs
|
| 54 |
+
inputs = [f"question: {context['question']} context: {context['context']}" for context in batch]
|
| 55 |
+
|
| 56 |
+
# Predict
|
| 57 |
+
outputs = self.predict(inputs=inputs, max_length=max_length, **kwargs)
|
| 58 |
+
|
| 59 |
+
return outputs
|
| 60 |
+
|
| 61 |
+
def qg(self, batch: List[str] = None, max_length: int = 512, **kwargs):
|
| 62 |
+
"""
|
| 63 |
+
Question generation prediction.
|
| 64 |
+
|
| 65 |
+
:param batch: batch of context with highlighted elements
|
| 66 |
+
:param max_length: max length of output
|
| 67 |
+
"""
|
| 68 |
+
|
| 69 |
+
# Transform inputs
|
| 70 |
+
inputs = [f"generate: {context}" for context in batch]
|
| 71 |
+
|
| 72 |
+
# Predict
|
| 73 |
+
outputs = self.predict(inputs=inputs, max_length=max_length, **kwargs)
|
| 74 |
+
|
| 75 |
+
return outputs
|
| 76 |
+
|
| 77 |
+
def ae(self, batch: List[str], max_length: int = 512, **kwargs):
|
| 78 |
+
"""
|
| 79 |
+
Answer extraction prediction.
|
| 80 |
+
|
| 81 |
+
:param batch: list of context
|
| 82 |
+
:param max_length: max length of output
|
| 83 |
+
"""
|
| 84 |
+
|
| 85 |
+
# Transform inputs
|
| 86 |
+
inputs = [f"extract: {context}" for context in batch]
|
| 87 |
+
|
| 88 |
+
# Predict
|
| 89 |
+
outputs = self.predict(inputs=inputs, max_length=max_length, **kwargs)
|
| 90 |
+
|
| 91 |
+
return outputs
|
| 92 |
+
|
| 93 |
+
def multitask(self, batch: List[str], max_length: int = 512, **kwargs):
|
| 94 |
+
"""
|
| 95 |
+
Answer extraction + question generation + question answering.
|
| 96 |
+
|
| 97 |
+
:param batch: list of context
|
| 98 |
+
:param max_length: max length of outputs
|
| 99 |
+
"""
|
| 100 |
+
|
| 101 |
+
# Build output dict
|
| 102 |
+
dict_batch = {'context': [context for context in batch], 'answers': [], 'questions': [], 'answers_bis': []}
|
| 103 |
+
|
| 104 |
+
# Iterate over context
|
| 105 |
+
for context in batch:
|
| 106 |
+
answers = self.ae(batch=[context], max_length=max_length, **kwargs)[0]
|
| 107 |
+
answers = answers.split('<sep>')
|
| 108 |
+
answers = [ans.strip() for ans in answers if ans != ' ']
|
| 109 |
+
dict_batch['answers'].append(answers)
|
| 110 |
+
for_qg = [f"{context.replace(ans, f'<hl> {ans} <hl> ')}" for ans in answers]
|
| 111 |
+
questions = self.qg(batch=for_qg, max_length=max_length, **kwargs)
|
| 112 |
+
dict_batch['questions'].append(questions)
|
| 113 |
+
new_answers = self.qa([{'context': context, 'question': question} for question in questions],
|
| 114 |
+
max_length=max_length, **kwargs)
|
| 115 |
+
dict_batch['answers_bis'].append(new_answers)
|
| 116 |
+
return dict_batch
|
| 117 |
+
|
| 118 |
+
def predict(self, inputs, max_length, **kwargs):
|
| 119 |
+
"""
|
| 120 |
+
Inference processing.
|
| 121 |
+
|
| 122 |
+
:param inputs: list of inputs
|
| 123 |
+
:param max_length: max_length of outputs
|
| 124 |
+
"""
|
| 125 |
+
|
| 126 |
+
# Tokenize inputs
|
| 127 |
+
inputs = self.tokenizer(inputs, max_length=max_length, padding='max_length', truncation=True,
|
| 128 |
+
return_tensors="pt")
|
| 129 |
+
|
| 130 |
+
# Retrieve input_ids and attention_mask
|
| 131 |
+
input_ids = inputs.input_ids.to(self.model.device)
|
| 132 |
+
attention_mask = inputs.attention_mask.to(self.model.device)
|
| 133 |
+
|
| 134 |
+
# Predict
|
| 135 |
+
outputs = self.model.generate(input_ids=input_ids, attention_mask=attention_mask, max_length=max_length,
|
| 136 |
+
**kwargs)
|
| 137 |
+
|
| 138 |
+
# Decode outputs
|
| 139 |
+
predictions = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
| 140 |
+
|
| 141 |
+
return predictions
|