Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- agent.py +152 -25
- requirements.txt +5 -0
agent.py
CHANGED
@@ -23,6 +23,22 @@ from langchain_anthropic import ChatAnthropic
|
|
23 |
from supabase.client import Client, create_client
|
24 |
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
load_dotenv()
|
28 |
|
@@ -80,39 +96,32 @@ def modulus(a: int, b: int) -> int:
|
|
80 |
|
81 |
@tool
|
82 |
def wiki_search(query: str) -> str:
|
83 |
-
"""Search Wikipedia for a query and return
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}">\n{content}\n</Document>'
|
95 |
-
)
|
96 |
-
return {"wiki_results": "\n\n---\n\n".join(summaries)}
|
97 |
-
|
98 |
|
99 |
|
100 |
|
101 |
@tool
|
102 |
def web_search(query: str) -> str:
|
103 |
-
"""Search Tavily for a query and return maximum 3 results.
|
|
|
|
|
|
|
104 |
search_docs = TavilySearch(max_results=3).invoke(query=query)
|
105 |
-
if not search_docs:
|
106 |
-
return "No web search results found."
|
107 |
-
|
108 |
formatted_search_docs = "\n\n---\n\n".join(
|
109 |
[
|
110 |
-
f'<Document source="{doc.metadata
|
111 |
-
f'{doc.page_content[:1000]}' # truncate to 1000 chars if needed
|
112 |
-
f'\n</Document>'
|
113 |
for doc in search_docs
|
114 |
-
]
|
115 |
-
)
|
116 |
return {"web_results": formatted_search_docs}
|
117 |
|
118 |
|
@@ -129,6 +138,36 @@ def arvix_search(query: str) -> str:
|
|
129 |
for doc in search_docs
|
130 |
])
|
131 |
return {"arvix_results": formatted_search_docs}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
|
134 |
@tool
|
@@ -141,6 +180,87 @@ def wolfram_alpha_query(query: str) -> str:
|
|
141 |
return next(res.results).text
|
142 |
except StopIteration:
|
143 |
return "No result found."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
|
146 |
|
@@ -172,16 +292,23 @@ retriever_tool = create_retriever_tool(
|
|
172 |
|
173 |
|
174 |
tools = [
|
|
|
175 |
multiply,
|
176 |
add,
|
177 |
subtract,
|
178 |
divide,
|
179 |
modulus,
|
180 |
wiki_search,
|
|
|
181 |
web_search,
|
182 |
arvix_search,
|
183 |
wolfram_alpha_query,
|
184 |
-
retriever_tool
|
|
|
|
|
|
|
|
|
|
|
185 |
]
|
186 |
|
187 |
# Build graph function
|
|
|
23 |
from supabase.client import Client, create_client
|
24 |
|
25 |
|
26 |
+
import re
|
27 |
+
from langchain_community.document_loaders import WikipediaLoader
|
28 |
+
from langchain_core.tools import tool
|
29 |
+
|
30 |
+
|
31 |
+
from langchain_core.tools import tool
|
32 |
+
from youtube_transcript_api import YouTubeTranscriptApi, TranscriptsDisabled, NoTranscriptFound
|
33 |
+
|
34 |
+
from langchain_core.tools import tool
|
35 |
+
from transformers import pipeline
|
36 |
+
|
37 |
+
|
38 |
+
import sys
|
39 |
+
|
40 |
+
# Before invoking your graph:
|
41 |
+
sys.setrecursionlimit(100) # Increase from default 25
|
42 |
|
43 |
load_dotenv()
|
44 |
|
|
|
96 |
|
97 |
@tool
|
98 |
def wiki_search(query: str) -> str:
|
99 |
+
"""Search Wikipedia for a query and return maximum 2 results.
|
100 |
+
|
101 |
+
Args:
|
102 |
+
query: The search query."""
|
103 |
+
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
104 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
105 |
+
[
|
106 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
107 |
+
for doc in search_docs
|
108 |
+
])
|
109 |
+
return {"wiki_results": formatted_search_docs}
|
|
|
|
|
|
|
|
|
110 |
|
111 |
|
112 |
|
113 |
@tool
|
114 |
def web_search(query: str) -> str:
|
115 |
+
"""Search Tavily for a query and return maximum 3 results.
|
116 |
+
|
117 |
+
Args:
|
118 |
+
query: The search query."""
|
119 |
search_docs = TavilySearch(max_results=3).invoke(query=query)
|
|
|
|
|
|
|
120 |
formatted_search_docs = "\n\n---\n\n".join(
|
121 |
[
|
122 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
|
|
|
|
123 |
for doc in search_docs
|
124 |
+
])
|
|
|
125 |
return {"web_results": formatted_search_docs}
|
126 |
|
127 |
|
|
|
138 |
for doc in search_docs
|
139 |
])
|
140 |
return {"arvix_results": formatted_search_docs}
|
141 |
+
|
142 |
+
|
143 |
+
@tool
|
144 |
+
def filtered_wiki_search(query: str, start_year: int = None, end_year: int = None) -> dict:
|
145 |
+
"""Search Wikipedia for a query and filter results by year if provided."""
|
146 |
+
search_docs = WikipediaLoader(query=query, load_max_docs=5).load()
|
147 |
+
|
148 |
+
def contains_year(text, start, end):
|
149 |
+
years = re.findall(r'\b(19\d{2}|20\d{2})\b', text)
|
150 |
+
for y in years:
|
151 |
+
y_int = int(y)
|
152 |
+
if start <= y_int <= end:
|
153 |
+
return True
|
154 |
+
return False
|
155 |
+
|
156 |
+
filtered_docs = []
|
157 |
+
for doc in search_docs:
|
158 |
+
if start_year and end_year:
|
159 |
+
if contains_year(doc.page_content, start_year, end_year):
|
160 |
+
filtered_docs.append(doc)
|
161 |
+
else:
|
162 |
+
filtered_docs.append(doc)
|
163 |
+
|
164 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
165 |
+
[
|
166 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
167 |
+
for doc in filtered_docs
|
168 |
+
])
|
169 |
+
return {"wiki_results": formatted_search_docs}
|
170 |
+
|
171 |
|
172 |
|
173 |
@tool
|
|
|
180 |
return next(res.results).text
|
181 |
except StopIteration:
|
182 |
return "No result found."
|
183 |
+
|
184 |
+
|
185 |
+
|
186 |
+
|
187 |
+
@tool
|
188 |
+
def youtube_transcript(url: str) -> str:
|
189 |
+
"""Fetch YouTube transcript text from a video URL."""
|
190 |
+
try:
|
191 |
+
video_id = url.split("v=")[-1].split("&")[0]
|
192 |
+
transcript_list = YouTubeTranscriptApi.get_transcript(video_id)
|
193 |
+
transcript = " ".join([segment['text'] for segment in transcript_list])
|
194 |
+
return transcript
|
195 |
+
except (TranscriptsDisabled, NoTranscriptFound):
|
196 |
+
return "Transcript not available for this video."
|
197 |
+
except Exception as e:
|
198 |
+
return f"Error fetching transcript: {str(e)}"
|
199 |
+
|
200 |
+
|
201 |
+
|
202 |
+
|
203 |
+
|
204 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en")
|
205 |
+
|
206 |
+
@tool
|
207 |
+
def translate_to_english(text: str) -> str:
|
208 |
+
"""Translate input text in any language to English."""
|
209 |
+
try:
|
210 |
+
# HuggingFace translation expects a list of strings
|
211 |
+
translated = translator(text, max_length=512)
|
212 |
+
return translated[0]['translation_text']
|
213 |
+
except Exception as e:
|
214 |
+
return f"Translation error: {str(e)}"
|
215 |
+
|
216 |
+
|
217 |
+
|
218 |
+
from langchain_core.tools import tool
|
219 |
+
import sympy
|
220 |
+
|
221 |
+
@tool
|
222 |
+
def solve_algebraic_expression(expression: str) -> str:
|
223 |
+
"""Solve or simplify the given algebraic expression."""
|
224 |
+
try:
|
225 |
+
expr = sympy.sympify(expression)
|
226 |
+
simplified = sympy.simplify(expr)
|
227 |
+
return str(simplified)
|
228 |
+
except Exception as e:
|
229 |
+
return f"Error solving expression: {str(e)}"
|
230 |
+
|
231 |
+
|
232 |
+
from langchain_core.tools import tool
|
233 |
+
|
234 |
+
@tool
|
235 |
+
def run_python_code(code: str) -> str:
|
236 |
+
"""Execute python code and return the result of variable 'result' if defined."""
|
237 |
+
try:
|
238 |
+
local_vars = {}
|
239 |
+
exec(code, {}, local_vars)
|
240 |
+
if 'result' in local_vars:
|
241 |
+
return str(local_vars['result'])
|
242 |
+
else:
|
243 |
+
return "Code executed successfully but no 'result' variable found."
|
244 |
+
except Exception as e:
|
245 |
+
return f"Error executing code: {str(e)}"
|
246 |
+
|
247 |
+
|
248 |
+
from langchain_core.tools import tool
|
249 |
+
import requests
|
250 |
+
|
251 |
+
@tool
|
252 |
+
def wikidata_query(sparql_query: str) -> str:
|
253 |
+
"""Run a SPARQL query against Wikidata and return the JSON results."""
|
254 |
+
endpoint = "https://query.wikidata.org/sparql"
|
255 |
+
headers = {"Accept": "application/sparql-results+json"}
|
256 |
+
try:
|
257 |
+
response = requests.get(endpoint, params={"query": sparql_query}, headers=headers)
|
258 |
+
response.raise_for_status()
|
259 |
+
data = response.json()
|
260 |
+
return str(data) # Or format as needed
|
261 |
+
except Exception as e:
|
262 |
+
return f"Error querying Wikidata: {str(e)}"
|
263 |
+
|
264 |
|
265 |
|
266 |
|
|
|
292 |
|
293 |
|
294 |
tools = [
|
295 |
+
|
296 |
multiply,
|
297 |
add,
|
298 |
subtract,
|
299 |
divide,
|
300 |
modulus,
|
301 |
wiki_search,
|
302 |
+
filtered_wiki_search,
|
303 |
web_search,
|
304 |
arvix_search,
|
305 |
wolfram_alpha_query,
|
306 |
+
retriever_tool,
|
307 |
+
youtube_transcript,
|
308 |
+
translate_to_english,
|
309 |
+
solve_algebraic_expression,
|
310 |
+
run_python_code,
|
311 |
+
wikidata_query
|
312 |
]
|
313 |
|
314 |
# Build graph function
|
requirements.txt
CHANGED
@@ -21,3 +21,8 @@ python-dotenv
|
|
21 |
sentence-transformers
|
22 |
openai
|
23 |
anthropic
|
|
|
|
|
|
|
|
|
|
|
|
21 |
sentence-transformers
|
22 |
openai
|
23 |
anthropic
|
24 |
+
|
25 |
+
youtube-transcript-api
|
26 |
+
transformers
|
27 |
+
sympy
|
28 |
+
requests
|