Spaces:
Runtime error
Runtime error
Update agent.py
Browse files
agent.py
CHANGED
@@ -1,350 +1,350 @@
|
|
1 |
-
"""LangGraph Agent"""
|
2 |
-
|
3 |
-
import os
|
4 |
-
from dotenv import load_dotenv
|
5 |
-
|
6 |
-
from langgraph.graph import START, StateGraph, MessagesState
|
7 |
-
from langgraph.prebuilt import tools_condition
|
8 |
-
from langgraph.prebuilt import ToolNode
|
9 |
-
|
10 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
11 |
-
from langchain_groq import ChatGroq
|
12 |
-
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
13 |
-
from langchain_tavily import TavilySearch
|
14 |
-
from langchain_community.document_loaders import WikipediaLoader
|
15 |
-
from langchain_community.document_loaders import ArxivLoader
|
16 |
-
from langchain_community.vectorstores import SupabaseVectorStore
|
17 |
-
from langchain_core.messages import SystemMessage, HumanMessage
|
18 |
-
from langchain_core.tools import tool
|
19 |
-
from langchain.tools.retriever import create_retriever_tool
|
20 |
-
from langchain_openai import ChatOpenAI
|
21 |
-
from langchain_anthropic import ChatAnthropic
|
22 |
-
from supabase.client import Client, create_client
|
23 |
-
import re
|
24 |
-
from langchain_community.document_loaders import WikipediaLoader
|
25 |
-
from youtube_transcript_api import YouTubeTranscriptApi, TranscriptsDisabled, NoTranscriptFound
|
26 |
-
import sympy
|
27 |
-
import wolframalpha
|
28 |
-
import sys
|
29 |
-
import requests
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
load_dotenv()
|
35 |
-
|
36 |
-
@tool
|
37 |
-
def multiply(a: int, b: int) -> int:
|
38 |
-
"""Multiply two numbers.
|
39 |
-
|
40 |
-
Args:
|
41 |
-
a: first int
|
42 |
-
b: second int
|
43 |
-
"""
|
44 |
-
return a * b
|
45 |
-
|
46 |
-
@tool
|
47 |
-
def add(a: int, b: int) -> int:
|
48 |
-
"""Add two numbers.
|
49 |
-
|
50 |
-
Args:
|
51 |
-
a: first int
|
52 |
-
b: second int
|
53 |
-
"""
|
54 |
-
return a + b
|
55 |
-
|
56 |
-
@tool
|
57 |
-
def subtract(a: int, b: int) -> int:
|
58 |
-
"""Subtract two numbers.
|
59 |
-
|
60 |
-
Args:
|
61 |
-
a: first int
|
62 |
-
b: second int
|
63 |
-
"""
|
64 |
-
return a - b
|
65 |
-
|
66 |
-
@tool
|
67 |
-
def divide(a: int, b: int) -> int:
|
68 |
-
"""Divide two numbers.
|
69 |
-
|
70 |
-
Args:
|
71 |
-
a: first int
|
72 |
-
b: second int
|
73 |
-
"""
|
74 |
-
if b == 0:
|
75 |
-
raise ValueError("Cannot divide by zero.")
|
76 |
-
return a / b
|
77 |
-
|
78 |
-
@tool
|
79 |
-
def modulus(a: int, b: int) -> int:
|
80 |
-
"""Get the modulus of two numbers.
|
81 |
-
|
82 |
-
Args:
|
83 |
-
a: first int
|
84 |
-
b: second int
|
85 |
-
"""
|
86 |
-
return a % b
|
87 |
-
|
88 |
-
@tool
|
89 |
-
def wiki_search(query: str) -> str:
|
90 |
-
"""Search Wikipedia for a query and return maximum 2 results.
|
91 |
-
|
92 |
-
Args:
|
93 |
-
query: The search query."""
|
94 |
-
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
95 |
-
formatted_search_docs = "\n\n---\n\n".join(
|
96 |
-
[
|
97 |
-
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
98 |
-
for doc in search_docs
|
99 |
-
])
|
100 |
-
#return {"wiki_results": formatted_search_docs}
|
101 |
-
return formatted_search_docs
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
@tool
|
106 |
-
def web_search(query: str) -> str:
|
107 |
-
"""Search Tavily for a query and return maximum 3 results.
|
108 |
-
|
109 |
-
Args:
|
110 |
-
query: The search query."""
|
111 |
-
search_docs = TavilySearch(max_results=3).invoke(query=query)
|
112 |
-
formatted_search_docs = "\n\n---\n\n".join(
|
113 |
-
[
|
114 |
-
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
115 |
-
for doc in search_docs
|
116 |
-
])
|
117 |
-
return {"web_results": formatted_search_docs}
|
118 |
-
|
119 |
-
|
120 |
-
@tool
|
121 |
-
def arvix_search(query: str) -> str:
|
122 |
-
"""Search Arxiv for a query and return maximum 3 result.
|
123 |
-
|
124 |
-
Args:
|
125 |
-
query: The search query."""
|
126 |
-
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
127 |
-
formatted_search_docs = "\n\n---\n\n".join(
|
128 |
-
[
|
129 |
-
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
130 |
-
for doc in search_docs
|
131 |
-
])
|
132 |
-
return {"arvix_results": formatted_search_docs}
|
133 |
-
|
134 |
-
|
135 |
-
@tool
|
136 |
-
def filtered_wiki_search(query: str, start_year: int = None, end_year: int = None) -> dict:
|
137 |
-
"""Search Wikipedia for a query and filter results by year if provided."""
|
138 |
-
search_docs = WikipediaLoader(query=query, load_max_docs=5).load()
|
139 |
-
|
140 |
-
def contains_year(text, start, end):
|
141 |
-
years = re.findall(r'\b(19\d{2}|20\d{2})\b', text)
|
142 |
-
for y in years:
|
143 |
-
y_int = int(y)
|
144 |
-
if start <= y_int <= end:
|
145 |
-
return True
|
146 |
-
return False
|
147 |
-
|
148 |
-
filtered_docs = []
|
149 |
-
for doc in search_docs:
|
150 |
-
if start_year and end_year:
|
151 |
-
if contains_year(doc.page_content, start_year, end_year):
|
152 |
-
filtered_docs.append(doc)
|
153 |
-
else:
|
154 |
-
filtered_docs.append(doc)
|
155 |
-
|
156 |
-
formatted_search_docs = "\n\n---\n\n".join(
|
157 |
-
[
|
158 |
-
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
159 |
-
for doc in filtered_docs
|
160 |
-
])
|
161 |
-
return {"wiki_results": formatted_search_docs}
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
@tool
|
166 |
-
def wolfram_alpha_query(query: str) -> str:
|
167 |
-
"""Query Wolfram Alpha with the given question and return the result."""
|
168 |
-
client = wolframalpha.Client(os.environ['WOLFRAM_APP_ID'])
|
169 |
-
res = client.query(query)
|
170 |
-
try:
|
171 |
-
return next(res.results).text
|
172 |
-
except StopIteration:
|
173 |
-
return "No result found."
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
@tool
|
179 |
-
def youtube_transcript(url: str) -> str:
|
180 |
-
"""Fetch YouTube transcript text from a video URL."""
|
181 |
-
try:
|
182 |
-
video_id = url.split("v=")[-1].split("&")[0]
|
183 |
-
transcript_list = YouTubeTranscriptApi.get_transcript(video_id)
|
184 |
-
transcript = " ".join([segment['text'] for segment in transcript_list])
|
185 |
-
return transcript
|
186 |
-
except (TranscriptsDisabled, NoTranscriptFound):
|
187 |
-
return "Transcript not available for this video."
|
188 |
-
except Exception as e:
|
189 |
-
return f"Error fetching transcript: {str(e)}"
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
@tool
|
194 |
-
def solve_algebraic_expression(expression: str) -> str:
|
195 |
-
"""Solve or simplify the given algebraic expression."""
|
196 |
-
try:
|
197 |
-
expr = sympy.sympify(expression)
|
198 |
-
simplified = sympy.simplify(expr)
|
199 |
-
return str(simplified)
|
200 |
-
except Exception as e:
|
201 |
-
return f"Error solving expression: {str(e)}"
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
@tool
|
206 |
-
def run_python_code(code: str) -> str:
|
207 |
-
"""Execute python code and return the result of variable 'result' if defined."""
|
208 |
-
try:
|
209 |
-
local_vars = {}
|
210 |
-
exec(code, {}, local_vars)
|
211 |
-
if 'result' in local_vars:
|
212 |
-
return str(local_vars['result'])
|
213 |
-
else:
|
214 |
-
return "Code executed successfully but no 'result' variable found."
|
215 |
-
except Exception as e:
|
216 |
-
return f"Error executing code: {str(e)}"
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
@tool
|
221 |
-
def wikidata_query(sparql_query: str) -> str:
|
222 |
-
"""Run a SPARQL query against Wikidata and return the JSON results."""
|
223 |
-
endpoint = "https://query.wikidata.org/sparql"
|
224 |
-
headers = {"Accept": "application/sparql-results+json"}
|
225 |
-
try:
|
226 |
-
response = requests.get(endpoint, params={"query": sparql_query}, headers=headers)
|
227 |
-
response.raise_for_status()
|
228 |
-
data = response.json()
|
229 |
-
return str(data) # Or format as needed
|
230 |
-
except Exception as e:
|
231 |
-
return f"Error querying Wikidata: {str(e)}"
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
# load the system prompt from the file
|
237 |
-
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
238 |
-
system_prompt = f.read()
|
239 |
-
|
240 |
-
# System message
|
241 |
-
sys_msg = SystemMessage(content=system_prompt)
|
242 |
-
|
243 |
-
# build a retriever
|
244 |
-
|
245 |
-
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
|
246 |
-
supabase: Client = create_client(
|
247 |
-
os.environ.get("SUPABASE_URL"),
|
248 |
-
os.environ.get("SUPABASE_SERVICE_KEY"))
|
249 |
-
vector_store = SupabaseVectorStore(
|
250 |
-
client=supabase,
|
251 |
-
embedding= embeddings,
|
252 |
-
table_name="documents",
|
253 |
-
query_name="match_documents_langchain",
|
254 |
-
)
|
255 |
-
retriever_tool = create_retriever_tool(
|
256 |
-
retriever=vector_store.as_retriever(),
|
257 |
-
name="Question Search",
|
258 |
-
description="A tool to retrieve similar questions from a vector store.",
|
259 |
-
)
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
tools = [
|
264 |
-
|
265 |
-
multiply,
|
266 |
-
add,
|
267 |
-
subtract,
|
268 |
-
divide,
|
269 |
-
modulus,
|
270 |
-
wiki_search,
|
271 |
-
filtered_wiki_search,
|
272 |
-
web_search,
|
273 |
-
arvix_search,
|
274 |
-
wolfram_alpha_query,
|
275 |
-
retriever_tool,
|
276 |
-
youtube_transcript,
|
277 |
-
solve_algebraic_expression,
|
278 |
-
run_python_code,
|
279 |
-
wikidata_query
|
280 |
-
]
|
281 |
-
|
282 |
-
# Build graph function
|
283 |
-
def build_graph(provider: str = "
|
284 |
-
"""Build the graph"""
|
285 |
-
# Load environment variables from .env file
|
286 |
-
if provider == "openai":
|
287 |
-
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)
|
288 |
-
elif provider == "anthropic":
|
289 |
-
llm = ChatAnthropic(model="claude-v1", temperature=0)
|
290 |
-
elif provider == "google":
|
291 |
-
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
292 |
-
elif provider == "groq":
|
293 |
-
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
|
294 |
-
elif provider == "huggingface":
|
295 |
-
llm = ChatHuggingFace(
|
296 |
-
llm = HuggingFaceEndpoint(
|
297 |
-
endpoint_url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
|
298 |
-
temperature=0,
|
299 |
-
),
|
300 |
-
)
|
301 |
-
else:
|
302 |
-
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
|
303 |
-
# Bind tools to LLM
|
304 |
-
llm_with_tools = llm.bind_tools(tools)
|
305 |
-
|
306 |
-
# Node
|
307 |
-
def assistant(state: MessagesState):
|
308 |
-
messages_with_sys = [sys_msg] + state["messages"]
|
309 |
-
return {"messages": [llm_with_tools.invoke(messages_with_sys)]}
|
310 |
-
|
311 |
-
|
312 |
-
def retriever(state: MessagesState):
|
313 |
-
"""Retriever node"""
|
314 |
-
similar_question = vector_store.similarity_search(state["messages"][0].content)
|
315 |
-
if not similar_question:
|
316 |
-
# No similar documents found, fallback message
|
317 |
-
example_msg = HumanMessage(
|
318 |
-
content="Sorry, I could not find any similar questions in the vector store."
|
319 |
-
)
|
320 |
-
else:
|
321 |
-
example_msg = HumanMessage(
|
322 |
-
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
|
323 |
-
)
|
324 |
-
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
|
325 |
-
|
326 |
-
builder = StateGraph(MessagesState)
|
327 |
-
builder.add_node("retriever", retriever)
|
328 |
-
builder.add_node("assistant", assistant)
|
329 |
-
builder.add_node("tools", ToolNode(tools))
|
330 |
-
builder.add_edge(START, "retriever")
|
331 |
-
builder.add_edge("retriever", "assistant")
|
332 |
-
builder.add_conditional_edges(
|
333 |
-
"assistant",
|
334 |
-
tools_condition,
|
335 |
-
)
|
336 |
-
builder.add_edge("tools", "assistant")
|
337 |
-
|
338 |
-
# Compile graph
|
339 |
-
return builder.compile()
|
340 |
-
|
341 |
-
# test
|
342 |
-
if __name__ == "__main__":
|
343 |
-
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
344 |
-
# Build the graph
|
345 |
-
graph = build_graph(provider="groq")
|
346 |
-
# Run the graph
|
347 |
-
messages = [HumanMessage(content=question)]
|
348 |
-
messages = graph.invoke({"messages": messages})
|
349 |
-
for m in messages["messages"]:
|
350 |
-
m.pretty_print()
|
|
|
1 |
+
"""LangGraph Agent"""
|
2 |
+
|
3 |
+
import os
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
|
6 |
+
from langgraph.graph import START, StateGraph, MessagesState
|
7 |
+
from langgraph.prebuilt import tools_condition
|
8 |
+
from langgraph.prebuilt import ToolNode
|
9 |
+
|
10 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
11 |
+
from langchain_groq import ChatGroq
|
12 |
+
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
13 |
+
from langchain_tavily import TavilySearch
|
14 |
+
from langchain_community.document_loaders import WikipediaLoader
|
15 |
+
from langchain_community.document_loaders import ArxivLoader
|
16 |
+
from langchain_community.vectorstores import SupabaseVectorStore
|
17 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
18 |
+
from langchain_core.tools import tool
|
19 |
+
from langchain.tools.retriever import create_retriever_tool
|
20 |
+
from langchain_openai import ChatOpenAI
|
21 |
+
from langchain_anthropic import ChatAnthropic
|
22 |
+
from supabase.client import Client, create_client
|
23 |
+
import re
|
24 |
+
from langchain_community.document_loaders import WikipediaLoader
|
25 |
+
from youtube_transcript_api import YouTubeTranscriptApi, TranscriptsDisabled, NoTranscriptFound
|
26 |
+
import sympy
|
27 |
+
import wolframalpha
|
28 |
+
import sys
|
29 |
+
import requests
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
load_dotenv()
|
35 |
+
|
36 |
+
@tool
|
37 |
+
def multiply(a: int, b: int) -> int:
|
38 |
+
"""Multiply two numbers.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
a: first int
|
42 |
+
b: second int
|
43 |
+
"""
|
44 |
+
return a * b
|
45 |
+
|
46 |
+
@tool
|
47 |
+
def add(a: int, b: int) -> int:
|
48 |
+
"""Add two numbers.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
a: first int
|
52 |
+
b: second int
|
53 |
+
"""
|
54 |
+
return a + b
|
55 |
+
|
56 |
+
@tool
|
57 |
+
def subtract(a: int, b: int) -> int:
|
58 |
+
"""Subtract two numbers.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
a: first int
|
62 |
+
b: second int
|
63 |
+
"""
|
64 |
+
return a - b
|
65 |
+
|
66 |
+
@tool
|
67 |
+
def divide(a: int, b: int) -> int:
|
68 |
+
"""Divide two numbers.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
a: first int
|
72 |
+
b: second int
|
73 |
+
"""
|
74 |
+
if b == 0:
|
75 |
+
raise ValueError("Cannot divide by zero.")
|
76 |
+
return a / b
|
77 |
+
|
78 |
+
@tool
|
79 |
+
def modulus(a: int, b: int) -> int:
|
80 |
+
"""Get the modulus of two numbers.
|
81 |
+
|
82 |
+
Args:
|
83 |
+
a: first int
|
84 |
+
b: second int
|
85 |
+
"""
|
86 |
+
return a % b
|
87 |
+
|
88 |
+
@tool
|
89 |
+
def wiki_search(query: str) -> str:
|
90 |
+
"""Search Wikipedia for a query and return maximum 2 results.
|
91 |
+
|
92 |
+
Args:
|
93 |
+
query: The search query."""
|
94 |
+
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
95 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
96 |
+
[
|
97 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
98 |
+
for doc in search_docs
|
99 |
+
])
|
100 |
+
#return {"wiki_results": formatted_search_docs}
|
101 |
+
return formatted_search_docs
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
@tool
|
106 |
+
def web_search(query: str) -> str:
|
107 |
+
"""Search Tavily for a query and return maximum 3 results.
|
108 |
+
|
109 |
+
Args:
|
110 |
+
query: The search query."""
|
111 |
+
search_docs = TavilySearch(max_results=3).invoke(query=query)
|
112 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
113 |
+
[
|
114 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
115 |
+
for doc in search_docs
|
116 |
+
])
|
117 |
+
return {"web_results": formatted_search_docs}
|
118 |
+
|
119 |
+
|
120 |
+
@tool
|
121 |
+
def arvix_search(query: str) -> str:
|
122 |
+
"""Search Arxiv for a query and return maximum 3 result.
|
123 |
+
|
124 |
+
Args:
|
125 |
+
query: The search query."""
|
126 |
+
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
127 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
128 |
+
[
|
129 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
130 |
+
for doc in search_docs
|
131 |
+
])
|
132 |
+
return {"arvix_results": formatted_search_docs}
|
133 |
+
|
134 |
+
|
135 |
+
@tool
|
136 |
+
def filtered_wiki_search(query: str, start_year: int = None, end_year: int = None) -> dict:
|
137 |
+
"""Search Wikipedia for a query and filter results by year if provided."""
|
138 |
+
search_docs = WikipediaLoader(query=query, load_max_docs=5).load()
|
139 |
+
|
140 |
+
def contains_year(text, start, end):
|
141 |
+
years = re.findall(r'\b(19\d{2}|20\d{2})\b', text)
|
142 |
+
for y in years:
|
143 |
+
y_int = int(y)
|
144 |
+
if start <= y_int <= end:
|
145 |
+
return True
|
146 |
+
return False
|
147 |
+
|
148 |
+
filtered_docs = []
|
149 |
+
for doc in search_docs:
|
150 |
+
if start_year and end_year:
|
151 |
+
if contains_year(doc.page_content, start_year, end_year):
|
152 |
+
filtered_docs.append(doc)
|
153 |
+
else:
|
154 |
+
filtered_docs.append(doc)
|
155 |
+
|
156 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
157 |
+
[
|
158 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
159 |
+
for doc in filtered_docs
|
160 |
+
])
|
161 |
+
return {"wiki_results": formatted_search_docs}
|
162 |
+
|
163 |
+
|
164 |
+
|
165 |
+
@tool
|
166 |
+
def wolfram_alpha_query(query: str) -> str:
|
167 |
+
"""Query Wolfram Alpha with the given question and return the result."""
|
168 |
+
client = wolframalpha.Client(os.environ['WOLFRAM_APP_ID'])
|
169 |
+
res = client.query(query)
|
170 |
+
try:
|
171 |
+
return next(res.results).text
|
172 |
+
except StopIteration:
|
173 |
+
return "No result found."
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
|
178 |
+
@tool
|
179 |
+
def youtube_transcript(url: str) -> str:
|
180 |
+
"""Fetch YouTube transcript text from a video URL."""
|
181 |
+
try:
|
182 |
+
video_id = url.split("v=")[-1].split("&")[0]
|
183 |
+
transcript_list = YouTubeTranscriptApi.get_transcript(video_id)
|
184 |
+
transcript = " ".join([segment['text'] for segment in transcript_list])
|
185 |
+
return transcript
|
186 |
+
except (TranscriptsDisabled, NoTranscriptFound):
|
187 |
+
return "Transcript not available for this video."
|
188 |
+
except Exception as e:
|
189 |
+
return f"Error fetching transcript: {str(e)}"
|
190 |
+
|
191 |
+
|
192 |
+
|
193 |
+
@tool
|
194 |
+
def solve_algebraic_expression(expression: str) -> str:
|
195 |
+
"""Solve or simplify the given algebraic expression."""
|
196 |
+
try:
|
197 |
+
expr = sympy.sympify(expression)
|
198 |
+
simplified = sympy.simplify(expr)
|
199 |
+
return str(simplified)
|
200 |
+
except Exception as e:
|
201 |
+
return f"Error solving expression: {str(e)}"
|
202 |
+
|
203 |
+
|
204 |
+
|
205 |
+
@tool
|
206 |
+
def run_python_code(code: str) -> str:
|
207 |
+
"""Execute python code and return the result of variable 'result' if defined."""
|
208 |
+
try:
|
209 |
+
local_vars = {}
|
210 |
+
exec(code, {}, local_vars)
|
211 |
+
if 'result' in local_vars:
|
212 |
+
return str(local_vars['result'])
|
213 |
+
else:
|
214 |
+
return "Code executed successfully but no 'result' variable found."
|
215 |
+
except Exception as e:
|
216 |
+
return f"Error executing code: {str(e)}"
|
217 |
+
|
218 |
+
|
219 |
+
|
220 |
+
@tool
|
221 |
+
def wikidata_query(sparql_query: str) -> str:
|
222 |
+
"""Run a SPARQL query against Wikidata and return the JSON results."""
|
223 |
+
endpoint = "https://query.wikidata.org/sparql"
|
224 |
+
headers = {"Accept": "application/sparql-results+json"}
|
225 |
+
try:
|
226 |
+
response = requests.get(endpoint, params={"query": sparql_query}, headers=headers)
|
227 |
+
response.raise_for_status()
|
228 |
+
data = response.json()
|
229 |
+
return str(data) # Or format as needed
|
230 |
+
except Exception as e:
|
231 |
+
return f"Error querying Wikidata: {str(e)}"
|
232 |
+
|
233 |
+
|
234 |
+
|
235 |
+
|
236 |
+
# load the system prompt from the file
|
237 |
+
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
238 |
+
system_prompt = f.read()
|
239 |
+
|
240 |
+
# System message
|
241 |
+
sys_msg = SystemMessage(content=system_prompt)
|
242 |
+
|
243 |
+
# build a retriever
|
244 |
+
|
245 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
|
246 |
+
supabase: Client = create_client(
|
247 |
+
os.environ.get("SUPABASE_URL"),
|
248 |
+
os.environ.get("SUPABASE_SERVICE_KEY"))
|
249 |
+
vector_store = SupabaseVectorStore(
|
250 |
+
client=supabase,
|
251 |
+
embedding= embeddings,
|
252 |
+
table_name="documents",
|
253 |
+
query_name="match_documents_langchain",
|
254 |
+
)
|
255 |
+
retriever_tool = create_retriever_tool(
|
256 |
+
retriever=vector_store.as_retriever(),
|
257 |
+
name="Question Search",
|
258 |
+
description="A tool to retrieve similar questions from a vector store.",
|
259 |
+
)
|
260 |
+
|
261 |
+
|
262 |
+
|
263 |
+
tools = [
|
264 |
+
|
265 |
+
multiply,
|
266 |
+
add,
|
267 |
+
subtract,
|
268 |
+
divide,
|
269 |
+
modulus,
|
270 |
+
wiki_search,
|
271 |
+
filtered_wiki_search,
|
272 |
+
web_search,
|
273 |
+
arvix_search,
|
274 |
+
wolfram_alpha_query,
|
275 |
+
retriever_tool,
|
276 |
+
youtube_transcript,
|
277 |
+
solve_algebraic_expression,
|
278 |
+
run_python_code,
|
279 |
+
wikidata_query
|
280 |
+
]
|
281 |
+
|
282 |
+
# Build graph function
|
283 |
+
def build_graph(provider: str = "huggingface"):
|
284 |
+
"""Build the graph"""
|
285 |
+
# Load environment variables from .env file
|
286 |
+
if provider == "openai":
|
287 |
+
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)
|
288 |
+
elif provider == "anthropic":
|
289 |
+
llm = ChatAnthropic(model="claude-v1", temperature=0)
|
290 |
+
elif provider == "google":
|
291 |
+
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
292 |
+
elif provider == "groq":
|
293 |
+
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
|
294 |
+
elif provider == "huggingface":
|
295 |
+
llm = ChatHuggingFace(
|
296 |
+
llm = HuggingFaceEndpoint(
|
297 |
+
endpoint_url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
|
298 |
+
temperature=0,
|
299 |
+
),
|
300 |
+
)
|
301 |
+
else:
|
302 |
+
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
|
303 |
+
# Bind tools to LLM
|
304 |
+
llm_with_tools = llm.bind_tools(tools)
|
305 |
+
|
306 |
+
# Node
|
307 |
+
def assistant(state: MessagesState):
|
308 |
+
messages_with_sys = [sys_msg] + state["messages"]
|
309 |
+
return {"messages": [llm_with_tools.invoke(messages_with_sys)]}
|
310 |
+
|
311 |
+
|
312 |
+
def retriever(state: MessagesState):
|
313 |
+
"""Retriever node"""
|
314 |
+
similar_question = vector_store.similarity_search(state["messages"][0].content)
|
315 |
+
if not similar_question:
|
316 |
+
# No similar documents found, fallback message
|
317 |
+
example_msg = HumanMessage(
|
318 |
+
content="Sorry, I could not find any similar questions in the vector store."
|
319 |
+
)
|
320 |
+
else:
|
321 |
+
example_msg = HumanMessage(
|
322 |
+
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
|
323 |
+
)
|
324 |
+
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
|
325 |
+
|
326 |
+
builder = StateGraph(MessagesState)
|
327 |
+
builder.add_node("retriever", retriever)
|
328 |
+
builder.add_node("assistant", assistant)
|
329 |
+
builder.add_node("tools", ToolNode(tools))
|
330 |
+
builder.add_edge(START, "retriever")
|
331 |
+
builder.add_edge("retriever", "assistant")
|
332 |
+
builder.add_conditional_edges(
|
333 |
+
"assistant",
|
334 |
+
tools_condition,
|
335 |
+
)
|
336 |
+
builder.add_edge("tools", "assistant")
|
337 |
+
|
338 |
+
# Compile graph
|
339 |
+
return builder.compile()
|
340 |
+
|
341 |
+
# test
|
342 |
+
if __name__ == "__main__":
|
343 |
+
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
344 |
+
# Build the graph
|
345 |
+
graph = build_graph(provider="groq")
|
346 |
+
# Run the graph
|
347 |
+
messages = [HumanMessage(content=question)]
|
348 |
+
messages = graph.invoke({"messages": messages})
|
349 |
+
for m in messages["messages"]:
|
350 |
+
m.pretty_print()
|