supratipb commited on
Commit
e32d749
Β·
verified Β·
1 Parent(s): 1dbfe33

Upload 2 files

Browse files
Files changed (1) hide show
  1. agent.py +8 -7
agent.py CHANGED
@@ -7,7 +7,7 @@ from langgraph.prebuilt import ToolNode
7
  from langchain_google_genai import ChatGoogleGenerativeAI
8
  from langchain_groq import ChatGroq
9
  from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
10
- from langchain_community.tools.tavily_search import TavilySearchResults
11
  from langchain_community.document_loaders import WikipediaLoader
12
  from langchain_community.document_loaders import ArxivLoader
13
  from langchain_community.vectorstores import SupabaseVectorStore
@@ -143,7 +143,7 @@ vector_store = SupabaseVectorStore(
143
  table_name="documents",
144
  query_name="match_documents_langchain",
145
  )
146
- create_retriever_tool = create_retriever_tool(
147
  retriever=vector_store.as_retriever(),
148
  name="Question Search",
149
  description="A tool to retrieve similar questions from a vector store.",
@@ -160,7 +160,8 @@ tools = [
160
  wiki_search,
161
  web_search,
162
  arvix_search,
163
- wolfram_alpha_query
 
164
  ]
165
 
166
  # Build graph function
@@ -169,10 +170,10 @@ def build_graph(provider: str = "openai"):
169
  # Load environment variables from .env file
170
  if provider == "openai":
171
  from langchain.chat_models import ChatOpenAI
172
- llm = ChatOpenAI(model_name="gpt-4", temperature=0)
173
- elif provider == "anthropic":
174
- from langchain.chat_models import ChatAnthropic
175
- llm = ChatAnthropic(model="claude-v1", temperature=0)
176
  if provider == "google":
177
  # Google Gemini
178
  llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
 
7
  from langchain_google_genai import ChatGoogleGenerativeAI
8
  from langchain_groq import ChatGroq
9
  from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
10
+ from langchain_community.tools.tavily_search import TavilySearch
11
  from langchain_community.document_loaders import WikipediaLoader
12
  from langchain_community.document_loaders import ArxivLoader
13
  from langchain_community.vectorstores import SupabaseVectorStore
 
143
  table_name="documents",
144
  query_name="match_documents_langchain",
145
  )
146
+ retriever_tool = create_retriever_tool(
147
  retriever=vector_store.as_retriever(),
148
  name="Question Search",
149
  description="A tool to retrieve similar questions from a vector store.",
 
160
  wiki_search,
161
  web_search,
162
  arvix_search,
163
+ wolfram_alpha_query,
164
+ retriever_tool
165
  ]
166
 
167
  # Build graph function
 
170
  # Load environment variables from .env file
171
  if provider == "openai":
172
  from langchain.chat_models import ChatOpenAI
173
+ llm = ChatOpenAI(model_name="gpt-4", temperature=0)
174
+ elif provider == "anthropic":
175
+ from langchain.chat_models import ChatAnthropic
176
+ llm = ChatAnthropic(model="claude-v1", temperature=0)
177
  if provider == "google":
178
  # Google Gemini
179
  llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)