"""LangGraph Agent""" import os from dotenv import load_dotenv from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition from langgraph.prebuilt import ToolNode from langchain_google_genai import ChatGoogleGenerativeAI from langchain_groq import ChatGroq from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings from langchain_tavily import TavilySearch from langchain_community.document_loaders import WikipediaLoader from langchain_community.document_loaders import ArxivLoader from langchain_community.vectorstores import SupabaseVectorStore from langchain_core.messages import SystemMessage, HumanMessage from langchain_core.tools import tool from langchain.tools.retriever import create_retriever_tool from langchain_openai import ChatOpenAI from langchain_anthropic import ChatAnthropic from supabase.client import Client, create_client import re from langchain_community.document_loaders import WikipediaLoader from youtube_transcript_api import YouTubeTranscriptApi, TranscriptsDisabled, NoTranscriptFound import sympy import wolframalpha import sys import requests load_dotenv() @tool def multiply(a: int, b: int) -> int: """Multiply two numbers. Args: a: first int b: second int """ return a * b @tool def add(a: int, b: int) -> int: """Add two numbers. Args: a: first int b: second int """ return a + b @tool def subtract(a: int, b: int) -> int: """Subtract two numbers. Args: a: first int b: second int """ return a - b @tool def divide(a: int, b: int) -> int: """Divide two numbers. Args: a: first int b: second int """ if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulus(a: int, b: int) -> int: """Get the modulus of two numbers. Args: a: first int b: second int """ return a % b @tool def wiki_search(query: str) -> str: """Search Wikipedia for a query and return maximum 2 results. Args: query: The search query.""" search_docs = WikipediaLoader(query=query, load_max_docs=2).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ]) #return {"wiki_results": formatted_search_docs} return formatted_search_docs @tool def web_search(query: str) -> str: """Search Tavily for a query and return maximum 3 results. Args: query: The search query.""" search_docs = TavilySearch(max_results=3).invoke(query=query) formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ]) return {"web_results": formatted_search_docs} @tool def arvix_search(query: str) -> str: """Search Arxiv for a query and return maximum 3 result. Args: query: The search query.""" search_docs = ArxivLoader(query=query, load_max_docs=3).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content[:1000]}\n' for doc in search_docs ]) return {"arvix_results": formatted_search_docs} @tool def filtered_wiki_search(query: str, start_year: int = None, end_year: int = None) -> dict: """Search Wikipedia for a query and filter results by year if provided.""" search_docs = WikipediaLoader(query=query, load_max_docs=5).load() def contains_year(text, start, end): years = re.findall(r'\b(19\d{2}|20\d{2})\b', text) for y in years: y_int = int(y) if start <= y_int <= end: return True return False filtered_docs = [] for doc in search_docs: if start_year and end_year: if contains_year(doc.page_content, start_year, end_year): filtered_docs.append(doc) else: filtered_docs.append(doc) formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in filtered_docs ]) return {"wiki_results": formatted_search_docs} @tool def wolfram_alpha_query(query: str) -> str: """Query Wolfram Alpha with the given question and return the result.""" client = wolframalpha.Client(os.environ['WOLFRAM_APP_ID']) res = client.query(query) try: return next(res.results).text except StopIteration: return "No result found." @tool def youtube_transcript(url: str) -> str: """Fetch YouTube transcript text from a video URL.""" try: video_id = url.split("v=")[-1].split("&")[0] transcript_list = YouTubeTranscriptApi.get_transcript(video_id) transcript = " ".join([segment['text'] for segment in transcript_list]) return transcript except (TranscriptsDisabled, NoTranscriptFound): return "Transcript not available for this video." except Exception as e: return f"Error fetching transcript: {str(e)}" @tool def solve_algebraic_expression(expression: str) -> str: """Solve or simplify the given algebraic expression.""" try: expr = sympy.sympify(expression) simplified = sympy.simplify(expr) return str(simplified) except Exception as e: return f"Error solving expression: {str(e)}" @tool def run_python_code(code: str) -> str: """Execute python code and return the result of variable 'result' if defined.""" try: local_vars = {} exec(code, {}, local_vars) if 'result' in local_vars: return str(local_vars['result']) else: return "Code executed successfully but no 'result' variable found." except Exception as e: return f"Error executing code: {str(e)}" @tool def wikidata_query(sparql_query: str) -> str: """Run a SPARQL query against Wikidata and return the JSON results.""" endpoint = "https://query.wikidata.org/sparql" headers = {"Accept": "application/sparql-results+json"} try: response = requests.get(endpoint, params={"query": sparql_query}, headers=headers) response.raise_for_status() data = response.json() return str(data) # Or format as needed except Exception as e: return f"Error querying Wikidata: {str(e)}" # load the system prompt from the file with open("system_prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() # System message sys_msg = SystemMessage(content=system_prompt) # build a retriever embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768 supabase: Client = create_client( os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_KEY")) vector_store = SupabaseVectorStore( client=supabase, embedding= embeddings, table_name="documents", query_name="match_documents_langchain", ) retriever_tool = create_retriever_tool( retriever=vector_store.as_retriever(), name="Question Search", description="A tool to retrieve similar questions from a vector store.", ) tools = [ multiply, add, subtract, divide, modulus, wiki_search, filtered_wiki_search, web_search, arvix_search, wolfram_alpha_query, retriever_tool, youtube_transcript, solve_algebraic_expression, run_python_code, wikidata_query ] # Build graph function def build_graph(provider: str = "huggingface"): """Build the graph""" # Load environment variables from .env file if provider == "openai": llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0) elif provider == "anthropic": llm = ChatAnthropic(model="claude-v1", temperature=0) elif provider == "google": llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) elif provider == "groq": llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it elif provider == "huggingface": llm = ChatHuggingFace( llm = HuggingFaceEndpoint( endpoint_url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", temperature=0, ), ) else: raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.") # Bind tools to LLM llm_with_tools = llm.bind_tools(tools) # Node def assistant(state: MessagesState): messages_with_sys = [sys_msg] + state["messages"] return {"messages": [llm_with_tools.invoke(messages_with_sys)]} def retriever(state: MessagesState): """Retriever node""" similar_question = vector_store.similarity_search(state["messages"][0].content) if not similar_question: # No similar documents found, fallback message example_msg = HumanMessage( content="Sorry, I could not find any similar questions in the vector store." ) else: example_msg = HumanMessage( content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}", ) return {"messages": [sys_msg] + state["messages"] + [example_msg]} builder = StateGraph(MessagesState) builder.add_node("retriever", retriever) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) builder.add_edge(START, "retriever") builder.add_edge("retriever", "assistant") builder.add_conditional_edges( "assistant", tools_condition, ) builder.add_edge("tools", "assistant") # Compile graph return builder.compile() # test if __name__ == "__main__": question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?" # Build the graph graph = build_graph(provider="groq") # Run the graph messages = [HumanMessage(content=question)] messages = graph.invoke({"messages": messages}) for m in messages["messages"]: m.pretty_print()