Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,16 @@
|
|
1 |
import gradio as gr
|
2 |
import librosa
|
3 |
-
import librosa.display
|
4 |
import numpy as np
|
5 |
from pydub import AudioSegment
|
6 |
import io
|
7 |
import os
|
|
|
8 |
|
9 |
# Function to convert any audio to WAV using pydub
|
10 |
def convert_to_wav(audio_file_path):
|
11 |
try:
|
12 |
audio = AudioSegment.from_file(audio_file_path)
|
|
|
13 |
wav_file_path = audio_file_path + ".wav"
|
14 |
audio.export(wav_file_path, format="wav")
|
15 |
return wav_file_path
|
@@ -22,10 +23,13 @@ def voice_changer(source_audio_path, target_audio_path):
|
|
22 |
raise gr.Error("Please upload both source and target audio files.")
|
23 |
|
24 |
# Ensure audio files are in WAV format
|
25 |
-
source_wav_path =
|
26 |
-
target_wav_path =
|
27 |
|
28 |
try:
|
|
|
|
|
|
|
29 |
# Load audio files
|
30 |
y_source, sr_source = librosa.load(source_wav_path, sr=None)
|
31 |
y_target, sr_target = librosa.load(target_wav_path, sr=None)
|
@@ -35,54 +39,80 @@ def voice_changer(source_audio_path, target_audio_path):
|
|
35 |
y_target = librosa.resample(y_target, orig_sr=sr_target, target_sr=sr_source)
|
36 |
print(f"Resampled target audio from {sr_target} to {sr_source} Hz.")
|
37 |
|
38 |
-
|
39 |
# --- Simplified Voice Transfer Logic (Melody/Rhythm Transfer) ---
|
40 |
# This is a very basic approach and not a full timbre transfer.
|
41 |
# It tries to align the dominant pitch of the target with the source.
|
42 |
|
43 |
# 1. Pitch Estimation for Source
|
44 |
-
|
45 |
try:
|
46 |
-
f0_source,
|
|
|
|
|
|
|
|
|
47 |
except Exception as e:
|
48 |
-
print(f"Pyin failed for source, trying
|
49 |
-
f0_source,
|
50 |
-
|
|
|
51 |
|
52 |
# 2. Estimate F0 for Target
|
53 |
-
f0_target, voiced_flag_target, voiced_probs_target = librosa.display.cqt_frequencies(n_bins=84, fmin=librosa.note_to_hz('C1')).T, None, None
|
54 |
try:
|
55 |
-
f0_target,
|
|
|
|
|
56 |
except Exception as e:
|
57 |
-
print(f"Pyin failed for target, trying
|
58 |
-
f0_target,
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
#
|
62 |
-
|
63 |
-
|
64 |
|
65 |
# Calculate a simple pitch shift ratio based on mean F0
|
66 |
# This is very simplistic and doesn't account for variations over time.
|
67 |
# A more advanced approach would involve temporal alignment and mapping.
|
68 |
-
mean_f0_source = np.mean(
|
69 |
-
mean_f0_target = np.mean(
|
70 |
|
71 |
-
if mean_f0_target > 0 and mean_f0_source > 0:
|
72 |
pitch_shift_factor = mean_f0_source / mean_f0_target
|
73 |
else:
|
74 |
-
pitch_shift_factor = 1.0 # No pitch shift if no valid pitch detected
|
75 |
|
76 |
# Apply a pitch shift to the target audio
|
77 |
# Using a simple `librosa.effects.pitch_shift` which is based on phase vocoder.
|
78 |
# This is not PSOLA and can introduce artifacts.
|
79 |
# The `n_steps` argument is in semitones.
|
|
|
80 |
n_steps = 12 * np.log2(pitch_shift_factor) if pitch_shift_factor > 0 else 0
|
|
|
|
|
81 |
|
82 |
# Adjust the duration of the target audio to roughly match the source
|
83 |
# This is a crude time stretching/compressing
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
# Apply pitch shift to the tempo-adjusted target audio
|
88 |
y_output = librosa.effects.pitch_shift(y_target_adjusted_tempo, sr=sr_source, n_steps=n_steps)
|
@@ -99,10 +129,10 @@ def voice_changer(source_audio_path, target_audio_path):
|
|
99 |
except Exception as e:
|
100 |
raise gr.Error(f"An error occurred during voice processing: {e}")
|
101 |
finally:
|
102 |
-
# Clean up temporary WAV files
|
103 |
-
if os.path.exists(source_wav_path):
|
104 |
os.remove(source_wav_path)
|
105 |
-
if os.path.exists(target_wav_path):
|
106 |
os.remove(target_wav_path)
|
107 |
|
108 |
# Gradio Interface
|
@@ -132,5 +162,5 @@ with gr.Blocks() as demo:
|
|
132 |
)
|
133 |
|
134 |
if __name__ == "__main__":
|
135 |
-
import soundfile as sf # Required for sf.write
|
136 |
demo.launch()
|
|
|
|
1 |
import gradio as gr
|
2 |
import librosa
|
|
|
3 |
import numpy as np
|
4 |
from pydub import AudioSegment
|
5 |
import io
|
6 |
import os
|
7 |
+
import soundfile as sf # Required for sf.write
|
8 |
|
9 |
# Function to convert any audio to WAV using pydub
|
10 |
def convert_to_wav(audio_file_path):
|
11 |
try:
|
12 |
audio = AudioSegment.from_file(audio_file_path)
|
13 |
+
# Create a temporary file path for WAV
|
14 |
wav_file_path = audio_file_path + ".wav"
|
15 |
audio.export(wav_file_path, format="wav")
|
16 |
return wav_file_path
|
|
|
23 |
raise gr.Error("Please upload both source and target audio files.")
|
24 |
|
25 |
# Ensure audio files are in WAV format
|
26 |
+
source_wav_path = None
|
27 |
+
target_wav_path = None
|
28 |
|
29 |
try:
|
30 |
+
source_wav_path = convert_to_wav(source_audio_path)
|
31 |
+
target_wav_path = convert_to_wav(target_audio_path)
|
32 |
+
|
33 |
# Load audio files
|
34 |
y_source, sr_source = librosa.load(source_wav_path, sr=None)
|
35 |
y_target, sr_target = librosa.load(target_wav_path, sr=None)
|
|
|
39 |
y_target = librosa.resample(y_target, orig_sr=sr_target, target_sr=sr_source)
|
40 |
print(f"Resampled target audio from {sr_target} to {sr_source} Hz.")
|
41 |
|
|
|
42 |
# --- Simplified Voice Transfer Logic (Melody/Rhythm Transfer) ---
|
43 |
# This is a very basic approach and not a full timbre transfer.
|
44 |
# It tries to align the dominant pitch of the target with the source.
|
45 |
|
46 |
# 1. Pitch Estimation for Source
|
47 |
+
# librosa.pyin returns (f0, voiced_flag, voiced_probabilities)
|
48 |
try:
|
49 |
+
f0_source, voiced_flag_source, voiced_probs_source = librosa.pyin(
|
50 |
+
y_source, fmin=librosa.note_to_hz('C2'), fmax=librosa.note_to_hz('C7'), sr=sr_source
|
51 |
+
# frame_length argument is not directly for pyin in newer librosa versions
|
52 |
+
# It's usually inferred from hop_length for features, or not needed for pyin directly
|
53 |
+
)
|
54 |
except Exception as e:
|
55 |
+
print(f"Pyin failed for source with general range, trying broader range: {e}")
|
56 |
+
f0_source, voiced_flag_source, voiced_probs_source = librosa.pyin(
|
57 |
+
y_source, fmin=60, fmax=500, sr=sr_source # More robust range for typical speech
|
58 |
+
)
|
59 |
|
60 |
# 2. Estimate F0 for Target
|
|
|
61 |
try:
|
62 |
+
f0_target, voiced_flag_target, voiced_probs_target = librosa.pyin(
|
63 |
+
y_target, fmin=librosa.note_to_hz('C2'), fmax=librosa.note_to_hz('C7'), sr=sr_target
|
64 |
+
)
|
65 |
except Exception as e:
|
66 |
+
print(f"Pyin failed for target with general range, trying broader range: {e}")
|
67 |
+
f0_target, voiced_flag_target, voiced_probs_target = librosa.pyin(
|
68 |
+
y_target, fmin=60, fmax=500, sr=sr_target # More robust range for typical speech
|
69 |
+
)
|
70 |
|
71 |
+
# Handle NaN values in f0 (unvoiced segments)
|
72 |
+
# Replace NaN with 0, so they don't affect mean calculation, but also limit to voiced segments
|
73 |
+
f0_source_valid = f0_source[~np.isnan(f0_source)]
|
74 |
+
f0_target_valid = f0_target[~np.isnan(f0_target)]
|
75 |
|
76 |
# Calculate a simple pitch shift ratio based on mean F0
|
77 |
# This is very simplistic and doesn't account for variations over time.
|
78 |
# A more advanced approach would involve temporal alignment and mapping.
|
79 |
+
mean_f0_source = np.mean(f0_source_valid) if len(f0_source_valid) > 0 else 0
|
80 |
+
mean_f0_target = np.mean(f0_target_valid) if len(f0_target_valid) > 0 else 0
|
81 |
|
82 |
+
if mean_f0_target > 0.1 and mean_f0_source > 0.1: # Check for very small positive values
|
83 |
pitch_shift_factor = mean_f0_source / mean_f0_target
|
84 |
else:
|
85 |
+
pitch_shift_factor = 1.0 # No pitch shift if no valid pitch detected or both are silent
|
86 |
|
87 |
# Apply a pitch shift to the target audio
|
88 |
# Using a simple `librosa.effects.pitch_shift` which is based on phase vocoder.
|
89 |
# This is not PSOLA and can introduce artifacts.
|
90 |
# The `n_steps` argument is in semitones.
|
91 |
+
# log2(pitch_shift_factor) * 12 gives us semitones
|
92 |
n_steps = 12 * np.log2(pitch_shift_factor) if pitch_shift_factor > 0 else 0
|
93 |
+
print(f"Calculated pitch shift: {n_steps:.2f} semitones.")
|
94 |
+
|
95 |
|
96 |
# Adjust the duration of the target audio to roughly match the source
|
97 |
# This is a crude time stretching/compressing
|
98 |
+
# Using librosa.get_duration to handle potential discrepancies in array lengths
|
99 |
+
duration_source = librosa.get_duration(y=y_source, sr=sr_source)
|
100 |
+
duration_target = librosa.get_duration(y=y_target, sr=sr_target)
|
101 |
+
|
102 |
+
# Avoid division by zero
|
103 |
+
if duration_target > 0:
|
104 |
+
duration_ratio = duration_source / duration_target
|
105 |
+
else:
|
106 |
+
duration_ratio = 1.0 # No time change if target has no duration
|
107 |
+
|
108 |
+
print(f"Duration Source: {duration_source:.2f}s, Target: {duration_target:.2f}s, Ratio: {duration_ratio:.2f}")
|
109 |
+
|
110 |
+
if duration_ratio != 1.0:
|
111 |
+
# We need to compute an appropriate hop_length for time_stretch if rate is not int.
|
112 |
+
# Using rate directly for time_stretch
|
113 |
+
y_target_adjusted_tempo = librosa.effects.time_stretch(y_target, rate=duration_ratio)
|
114 |
+
else:
|
115 |
+
y_target_adjusted_tempo = y_target # No stretching needed
|
116 |
|
117 |
# Apply pitch shift to the tempo-adjusted target audio
|
118 |
y_output = librosa.effects.pitch_shift(y_target_adjusted_tempo, sr=sr_source, n_steps=n_steps)
|
|
|
129 |
except Exception as e:
|
130 |
raise gr.Error(f"An error occurred during voice processing: {e}")
|
131 |
finally:
|
132 |
+
# Clean up temporary WAV files irrespective of success/failure
|
133 |
+
if source_wav_path and os.path.exists(source_wav_path):
|
134 |
os.remove(source_wav_path)
|
135 |
+
if target_wav_path and os.path.exists(target_wav_path):
|
136 |
os.remove(target_wav_path)
|
137 |
|
138 |
# Gradio Interface
|
|
|
162 |
)
|
163 |
|
164 |
if __name__ == "__main__":
|
|
|
165 |
demo.launch()
|
166 |
+
|