suprimedev commited on
Commit
3b0f5c1
·
verified ·
1 Parent(s): 89d2d90

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +124 -97
app.py CHANGED
@@ -1,109 +1,136 @@
1
  import gradio as gr
2
- import torchaudio
3
- from speechbrain.pretrained import EncoderClassifier
4
- from speechbrain.pretrained import HIFIGAN
5
- from speechbrain.pretrained import EncoderClassifier
6
- import torch
7
- import tempfile
8
  import os
9
- from pathlib import Path
10
-
11
- # Initialize models
12
- classifier = EncoderClassifier.from_hparams(source="speechbrain/spkrec-ecapa-voxceleb")
13
- hifi_gan = HIFIGAN.from_hparams(source="speechbrain/tts-hifigan-ljspeech")
14
-
15
- def extract_speaker_embedding(audio_file):
16
- """Extract speaker embedding from audio file"""
17
- signal, fs = torchaudio.load(audio_file)
18
-
19
- # Resample if needed
20
- if fs != 16000:
21
- resampler = torchaudio.transforms.Resample(fs, 16000)
22
- signal = resampler(signal)
23
- fs = 16000
24
-
25
- # Handle stereo audio
26
- if signal.shape[0] > 1:
27
- signal = torch.mean(signal, dim=0, keepdim=True)
28
-
29
- embeddings = classifier.encode_batch(signal)
30
- return embeddings.squeeze(0)
31
-
32
- def voice_conversion(source_audio, target_audio):
33
- """Convert source voice to sound like target voice"""
34
- # Create temp files
35
- with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as source_tmp, \
36
- tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as target_tmp:
37
-
38
- source_path = source_tmp.name
39
- target_path = target_tmp.name
40
-
41
- # Save uploaded files
42
- source_audio.save(source_path)
43
- target_audio.save(target_path)
44
-
45
  try:
46
- # Extract source audio and target speaker embedding
47
- source_signal, source_fs = torchaudio.load(source_path)
48
-
49
- # Handle stereo audio
50
- if source_signal.shape[0] > 1:
51
- source_signal = torch.mean(source_signal, dim=0, keepdim=True)
52
-
53
- # Resample source to 16kHz if needed
54
- if source_fs != 16000:
55
- resampler = torchaudio.transforms.Resample(source_fs, 16000)
56
- source_signal = resampler(source_signal)
57
- source_fs = 16000
58
-
59
- # Extract target speaker embedding
60
- target_emb = extract_speaker_embedding(target_path)
61
-
62
- # Generate converted waveform
63
- waveform = hifi_gan.generate(source_signal, speaker_emb=target_emb)
64
-
65
- # Save output
66
- output_path = os.path.join(tempfile.mkdtemp(), "output.wav")
67
- torchaudio.save(output_path, waveform.squeeze(0).cpu(), 16000)
68
-
69
- return output_path
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
  finally:
71
- # Clean up temp files
72
- os.unlink(source_path)
73
- os.unlink(target_path)
 
 
74
 
75
- # Gradio interface
76
  with gr.Blocks() as demo:
77
- gr.Markdown("# 🎙️ Voice Changer")
78
- gr.Markdown("بارگذاری فایل صوتی اصلی و فایل صوتی هدف برای تبدیل صدای اول به سبک دوم")
79
-
 
 
 
 
 
 
 
80
  with gr.Row():
81
- with gr.Column():
82
- source_audio = gr.Audio(label="فایل صوتی اصلی (صدا برای تبدیل)", type="filepath")
83
- with gr.Column():
84
- target_audio = gr.Audio(label="فایل صوتی هدف (سبک مورد نظر)", type="filepath")
85
-
86
- output_audio = gr.Audio(label="خروجی تبدیل شده", interactive=False)
87
-
88
- convert_btn = gr.Button("تبدیل صوت")
89
- convert_btn.click(
90
- fn=voice_conversion,
91
- inputs=[source_audio, target_audio],
92
  outputs=output_audio
93
  )
94
-
95
- gr.Examples(
96
- examples=[
97
- [os.path.join(os.path.dirname(__file__), "examples/source1.wav"),
98
- os.path.join(os.path.dirname(__file__), "examples/target1.wav")],
99
- [os.path.join(os.path.dirname(__file__), "examples/source2.wav"),
100
- os.path.join(os.path.dirname(__file__), "examples/target2.wav")]
101
- ],
102
- inputs=[source_audio, target_audio],
103
- outputs=output_audio,
104
- fn=voice_conversion,
105
- cache_examples=True
106
- )
107
 
108
  if __name__ == "__main__":
 
109
  demo.launch()
 
1
  import gradio as gr
2
+ import librosa
3
+ import librosa.display
4
+ import numpy as np
5
+ from pydub import AudioSegment
6
+ import io
 
7
  import os
8
+
9
+ # Function to convert any audio to WAV using pydub
10
+ def convert_to_wav(audio_file_path):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  try:
12
+ audio = AudioSegment.from_file(audio_file_path)
13
+ wav_file_path = audio_file_path + ".wav"
14
+ audio.export(wav_file_path, format="wav")
15
+ return wav_file_path
16
+ except Exception as e:
17
+ raise gr.Error(f"Error converting audio to WAV: {e}")
18
+
19
+ # Main voice changer function (simplified)
20
+ def voice_changer(source_audio_path, target_audio_path):
21
+ if source_audio_path is None or target_audio_path is None:
22
+ raise gr.Error("Please upload both source and target audio files.")
23
+
24
+ # Ensure audio files are in WAV format
25
+ source_wav_path = convert_to_wav(source_audio_path)
26
+ target_wav_path = convert_to_wav(target_audio_path)
27
+
28
+ try:
29
+ # Load audio files
30
+ y_source, sr_source = librosa.load(source_wav_path, sr=None)
31
+ y_target, sr_target = librosa.load(target_wav_path, sr=None)
32
+
33
+ # Resample target audio to source sample rate if different
34
+ if sr_source != sr_target:
35
+ y_target = librosa.resample(y_target, orig_sr=sr_target, target_sr=sr_source)
36
+ print(f"Resampled target audio from {sr_target} to {sr_source} Hz.")
37
+
38
+
39
+ # --- Simplified Voice Transfer Logic (Melody/Rhythm Transfer) ---
40
+ # This is a very basic approach and not a full timbre transfer.
41
+ # It tries to align the dominant pitch of the target with the source.
42
+
43
+ # 1. Pitch Estimation for Source
44
+ f0_source, voiced_flag_source, voiced_probs_source = librosa.display.cqt_frequencies(n_bins=84, fmin=librosa.note_to_hz('C1')).T, None, None
45
+ try:
46
+ f0_source, _, _ = librosa.pyin(y_source, fmin=librosa.note_to_hz('C2'), fmax=librosa.note_to_hz('C7'), sr=sr_source, frame_length=2048)
47
+ except Exception as e:
48
+ print(f"Pyin failed for source, trying different params or fallback: {e}")
49
+ f0_source, _, _ = librosa.pyin(y_source, fmin=60, fmax=500, sr=sr_source, frame_length=2048) # More robust range
50
+
51
+
52
+ # 2. Estimate F0 for Target
53
+ f0_target, voiced_flag_target, voiced_probs_target = librosa.display.cqt_frequencies(n_bins=84, fmin=librosa.note_to_hz('C1')).T, None, None
54
+ try:
55
+ f0_target, _, _ = librosa.pyin(y_target, fmin=librosa.note_to_hz('C2'), fmax=librosa.note_to_hz('C7'), sr=sr_target, frame_length=2048)
56
+ except Exception as e:
57
+ print(f"Pyin failed for target, trying different params or fallback: {e}")
58
+ f0_target, _, _ = librosa.pyin(y_target, fmin=60, fmax=500, sr=sr_target, frame_length=2048) # More robust range
59
+
60
+
61
+ # Handle NaN values in f0_source (unvoiced segments)
62
+ f0_source_interpolated = np.nan_to_num(f0_source, nan=0.0)
63
+ f0_target_interpolated = np.nan_to_num(f0_target, nan=0.0)
64
+
65
+ # Calculate a simple pitch shift ratio based on mean F0
66
+ # This is very simplistic and doesn't account for variations over time.
67
+ # A more advanced approach would involve temporal alignment and mapping.
68
+ mean_f0_source = np.mean(f0_source_interpolated[f0_source_interpolated > 0])
69
+ mean_f0_target = np.mean(f0_target_interpolated[f0_target_interpolated > 0])
70
+
71
+ if mean_f0_target > 0 and mean_f0_source > 0:
72
+ pitch_shift_factor = mean_f0_source / mean_f0_target
73
+ else:
74
+ pitch_shift_factor = 1.0 # No pitch shift if no valid pitch detected
75
+
76
+ # Apply a pitch shift to the target audio
77
+ # Using a simple `librosa.effects.pitch_shift` which is based on phase vocoder.
78
+ # This is not PSOLA and can introduce artifacts.
79
+ # The `n_steps` argument is in semitones.
80
+ n_steps = 12 * np.log2(pitch_shift_factor) if pitch_shift_factor > 0 else 0
81
+
82
+ # Adjust the duration of the target audio to roughly match the source
83
+ # This is a crude time stretching/compressing
84
+ duration_ratio = len(y_source) / len(y_target)
85
+ y_target_adjusted_tempo = librosa.effects.time_stretch(y_target, rate=duration_ratio)
86
+
87
+ # Apply pitch shift to the tempo-adjusted target audio
88
+ y_output = librosa.effects.pitch_shift(y_target_adjusted_tempo, sr=sr_source, n_steps=n_steps)
89
+
90
+ # Normalize the output audio to prevent clipping
91
+ y_output = librosa.util.normalize(y_output)
92
+
93
+ # Create a temporary file to save the output audio
94
+ output_file_path = "output_voice_changed.wav"
95
+ sf.write(output_file_path, y_output, sr_source)
96
+
97
+ return output_file_path
98
+
99
+ except Exception as e:
100
+ raise gr.Error(f"An error occurred during voice processing: {e}")
101
  finally:
102
+ # Clean up temporary WAV files
103
+ if os.path.exists(source_wav_path):
104
+ os.remove(source_wav_path)
105
+ if os.path.exists(target_wav_path):
106
+ os.remove(target_wav_path)
107
 
108
+ # Gradio Interface
109
  with gr.Blocks() as demo:
110
+ gr.Markdown(
111
+ """
112
+ # Simple Audio Style Transfer (Voice Changer - Experimental)
113
+ Upload two audio files. The goal is to make the "Target Audio" mimic the pitch/melody of the "Source Audio".
114
+ **Note:** This is a very basic implementation and **not a full voice cloning/timbre transfer**.
115
+ It performs a simplified pitch and tempo adjustment based on the source's characteristics.
116
+ Expect artifacts and limited "voice changing" effect. For true voice cloning, more advanced models are needed.
117
+ """
118
+ )
119
+
120
  with gr.Row():
121
+ source_audio_input = gr.Audio(type="filepath", label="Source Audio (Reference Voice/Style)", sources=["upload"])
122
+ target_audio_input = gr.Audio(type="filepath", label="Target Audio (Voice to be Changed)", sources=["upload"])
123
+
124
+ output_audio = gr.Audio(label="Transformed Audio")
125
+
126
+ voice_changer_button = gr.Button("Transform Voice")
127
+
128
+ voice_changer_button.click(
129
+ fn=voice_changer,
130
+ inputs=[source_audio_input, target_audio_input],
 
131
  outputs=output_audio
132
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
133
 
134
  if __name__ == "__main__":
135
+ import soundfile as sf # Required for sf.write
136
  demo.launch()