File size: 26,987 Bytes
3ec6126 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
import gradio as gr
import numpy as np
from PIL import Image
import cv2
from insightface.app import FaceAnalysis
from huggingface_hub import snapshot_download
import time
import subprocess
import os
# --- Configuration ---
SECURITYLEVELS = ["128", "196", "256"]
FRMODELS = ["AuraFace-v1"]
EXAMPLE_IMAGES_ENROLL = ['./VGGFace2/n000001/0002_01.jpg', './VGGFace2/n000149/0002_01.jpg', './VGGFace2/n000082/0001_02.jpg', './VGGFace2/n000148/0014_01.jpg']
EXAMPLE_IMAGES_AUTH = ['./VGGFace2/n000001/0013_01.jpg', './VGGFace2/n000149/0019_01.jpg', './VGGFace2/n000082/0003_03.jpg', './VGGFace2/n000148/0043_01.jpg']
# --- Global Variables ---
face_app = None
DB_SUBJECT_COUNT = 1
ENROLLED_SEARCH_IMAGES = []
# --- Helper Functions ---
def initialize_face_app():
"""Initializes the FaceAnalysis model."""
global face_app
if face_app is None:
print("Initializing FaceAnalysis model...")
snapshot_download("fal/AuraFace-v1", local_dir="./models/auraface")
face_app = FaceAnalysis(name="auraface", providers=["CPUExecutionProvider"], root=".")
face_app.prepare(ctx_id=0, det_size=(128, 128))
print("FaceAnalysis model initialized.")
return face_app
def run_binary(bin_path, *args):
"""Runs a compiled binary file and returns the result."""
if not os.path.isfile(bin_path):
raise gr.Error(f"Error: Compiled binary not found at {bin_path}")
command = [bin_path] + [str(arg) for arg in args]
print(f"Running command: {' '.join(command)}")
try:
os.chmod(bin_path, 0o755)
start_time = time.time()
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, check=True)
duration = time.time() - start_time
print(f"Binary execution successful. Duration: {duration:.2f}s")
return result.stdout, duration
except subprocess.CalledProcessError as e:
print(f"Error executing binary: {e.stderr}")
raise gr.Error(f"Execution failed: {e.stderr}")
except Exception as e:
print(f"An unexpected error occurred: {e}")
raise gr.Error(f"An unexpected error occurred: {str(e)}")
def extract_embedding(image_path, mode=None):
"""Extracts face embedding from an image path."""
if image_path is None:
raise gr.Error("Please upload or select an image first.")
app = initialize_face_app()
try:
pil_image = Image.open(image_path).convert("RGB")
except Exception as e:
raise gr.Error(f"Failed to open or read image file: {e}")
cv2_image = np.array(pil_image)
cv2_image = cv2_image[:, :, ::-1]
faces = app.get(cv2_image)
if not faces:
raise gr.Error("No face detected. Please try another image.")
embedding = faces[0].normed_embedding
if mode:
# For 1:1 recognition, save to the respective binary folder
if mode in ["enroll", "auth"]:
emb_path = f'./{mode}-emb.txt'
# For 1:N search, create a subject-specific path in the search folder
else: # search_enroll, search_auth
if "VGGFace2" in image_path:
subject = image_path.split('/')[-2]
else:
subject = 'uploadedSubj'
os.makedirs(f'./embeddings/{subject}', exist_ok=True)
emb_path = f'./embeddings/{subject}/{mode}-emb.txt'
np.savetxt(emb_path, embedding.reshape(1, -1), fmt="%.6f", delimiter=',')
return embedding.tolist(), emb_path
return embedding.tolist()
# --- UI Components ---
def create_image_selection_ui(label, gallery_images):
with gr.Group():
gr.HTML(f'<h3 class="step-header">{label}</h3>')
image_state = gr.State()
image_display = gr.Image(type="filepath", label="Selected Image", interactive=False)
with gr.Tabs():
with gr.TabItem("Upload"):
image_upload = gr.Image(type="filepath", label=f"Upload Image")
with gr.TabItem("Select from Gallery"):
image_gallery = gr.Gallery(value=gallery_images, columns=4, height="auto", object_fit="contain")
# Event handlers that directly update both the hidden state and the visible display
def on_select(evt: gr.SelectData):
selected_image = gallery_images[evt.index] # Get the actual image path from the gallery list
return selected_image, selected_image
def on_upload(filepath):
return filepath, filepath
image_upload.change(on_upload, inputs=image_upload, outputs=[image_state, image_display])
image_gallery.select(on_select, None, outputs=[image_state, image_display])
return image_state
# --- UI Styling and Theming ---
css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&display=swap');
:root {
--background: #EEEEEC; --background-alt: #EEEEEC; --card-bg: #FFFFFF; --card-bg-alt: rgba(255, 208, 134, 0.3);
--foreground: #222; --foreground-muted: #333; --accent-orange: rgb(255, 208, 134);
--accent-gradient: linear-gradient(90deg, var(--accent-orange) 0%, #333333 100%);
--font-sans: 'Inter', Arial, Helvetica, sans-serif; --gray-333: #333333;
}
body, .gradio-container { background: var(--background); color: var(--foreground); font-family: var(--font-sans); font-size: 16px; line-height: 1.6; }
.main-header { padding: 1rem; text-align: center; margin-bottom: 2rem; background: var(--gray-333); color: var(--background); border-radius: 15px; }
.main-header h1 { font-size: 2.5rem; font-weight: 700; color: var(--accent-orange); margin:0; }
.main-header p { font-size: 1.1rem; opacity: 0.9; margin: 0.5rem 0 0 0; }
.main-header a { color: var(--background); text-decoration: none; background: transparent; padding: 0.6rem 1.5rem; border-radius: 25px; border: 1px solid var(--accent-orange); font-weight: 500; transition: all 0.3s ease; display: inline-block; margin-top: 1rem; }
.main-header a:hover { background: var(--accent-orange); color: var(--gray-333); }
.section-header { text-align: center; margin: 2rem 0; padding: 0 1rem; }
.section-header h1 { color: var(--foreground); font-size: 2.2rem; font-weight: 600; margin-bottom: 0.5rem; }
.section-header h2 { color: var(--foreground-muted); font-size: 1.5rem; font-weight: 400; margin: 0; }
.narrative-section { background: var(--card-bg); border-top: 4px solid var(--accent-orange); padding: 2rem; margin: 1.5rem 0; border-radius: 12px; box-shadow: 0 4px 15px rgba(0,0,0,0.05); }
.narrative-header { color: var(--foreground); margin: 0 0 1.5rem 0; font-size: 1.8rem; font-weight: 600; }
.step-header { color: var(--foreground); margin: 0 0 1.5rem 0; font-size: 1.3rem; font-weight: 600; }
.info-card { background: var(--card-bg-alt); border: 1px solid var(--accent-orange); border-radius: 12px; padding: 1.5rem; margin: 1.5rem 0; }
.info-card h3 { color: var(--foreground); margin: 0 0 1rem 0; font-size: 1.3rem; font-weight: 600; }
.info-card p { margin: 0 0 1rem 0; color: var(--foreground-muted); line-height: 1.6; }
.warning-card { background: #ffebee; border: 1px solid #c62828; border-radius: 12px; padding: 1.5rem; margin: 1.5rem 0; }
.warning-card h3 { color: #c62828; margin: 0 0 1rem 0; font-size: 1.3rem; font-weight: 600; }
.warning-card p { margin: 0; color: #424242; line-height: 1.6; }
.result-container { padding: 2rem; border-radius: 15px; text-align: center; margin-top: 1rem; color: white; }
.result-container h2 { margin: 0 0 0.5rem 0; font-size: 2rem; font-weight: 600; color: white; }
.result-container p { margin: 0; opacity: 0.95; font-size: 1rem; }
.match-verified { background: linear-gradient(135deg, #4caf50 0%, #45a049 100%); }
.no-match { background: linear-gradient(135deg, #f44336 0%, #d32f2f 100%); }
.icon-lock { font-size: 4rem; margin: 1rem; }
.status-text { font-size: 1.1rem; color: var(--foreground-muted); margin-top: 1rem; }
"""
# --- Gradio UI Definition ---
with gr.Blocks(css=css) as demo:
# --- Header ---
gr.HTML("""
<div class="main-header">
<h1>Suraksh AI</h1>
<p style="color: #EEEEEC; opacity: 0.9;">The Future of Secure Biometrics</p>
<a href="https://suraksh.ai/" target="_blank">π Visit Our Website</a>
</div>
""")
# --- Key Generation on Load ---
# Generate keys once for each demo when the app starts up
demo.load(lambda: run_binary("./bin/genKeys.bin", "128", "genkeys"), None, None)
demo.load(lambda: run_binary("./bin/search.bin", "128", "genkeys"), None, None)
# --- Main Tabs for Demo Mode ---
with gr.Tabs() as mode_tabs:
# --- 1:1 Recognition Demo ---
with gr.TabItem("ποΈ Face Recognition (1:1)"):
gr.HTML("""<div class="section-header"><h1>Is this the same person?</h1><h2>A one-to-one verification demo.</h2></div>""")
with gr.Tabs():
# --- Vulnerable System Tab ---
with gr.TabItem("π¨ The Vulnerable System"):
with gr.Group(elem_classes="narrative-section"):
gr.HTML('<h2 class="narrative-header">The Problem: How Your Face Can Be Stolen</h2>')
gr.HTML("""<div class="warning-card"><h3>β οΈ Your Biometric Data is Exposed!</h3><p>Most systems handle biometric data in plaintext. This means your facial embeddingβa digital map of your faceβcan be stolen and used to reconstruct your image, creating a major privacy risk.</p></div>""")
with gr.Column():
gr.HTML('<h3 class="step-header">1. Original Image</h3>')
gr.Image(value=EXAMPLE_IMAGES_ENROLL[2], label="Original Face", interactive=False, show_label=False, container=False)
gr.HTML('<h3 class="step-header" style="margin-top: 2rem;">2. Simulate Attack: Steal Data</h3><p>An attacker breaches the system and steals the stored facial embedding. Click the button to simulate this theft.</p>')
extract_btn = gr.Button("π± Steal Biometric Data", variant="primary")
with gr.Group(visible=False) as stolen_data_group:
feature_output = gr.JSON(label="Stolen Feature Vector (Face Embedding)")
gr.HTML('<h3 class="step-header" style="margin-top: 2rem;">3. Simulate Attack: Reconstruct Face</h3><p>Now, the attacker uses the stolen features to create a reconstruction of the face, completely compromising the user\'s privacy.</p>')
reconstruct_btn = gr.Button("π Reconstruct Face from Stolen Data", variant="stop")
with gr.Group(visible=False) as reconstructed_image_group:
reconstructed_output = gr.Image(label="Reconstructed Face", interactive=False, show_label=False)
def extract_and_reveal(image_path):
embedding = extract_embedding(image_path)
feature_json = {"embedding": embedding}
return {
feature_output: feature_json,
stolen_data_group: gr.update(visible=True),
extract_btn: gr.update(value="Data Stolen!", interactive=False)
}
def show_reconstruction():
reconstructed_image_path = "./static/reconstructed.png"
return {
reconstructed_output: reconstructed_image_path,
reconstructed_image_group: gr.update(visible=True),
reconstruct_btn: gr.update(interactive=False)
}
extract_btn.click(
fn=extract_and_reveal,
inputs=gr.State(EXAMPLE_IMAGES_ENROLL[0]),
outputs=[feature_output, stolen_data_group, extract_btn]
)
reconstruct_btn.click(
fn=show_reconstruction,
inputs=None,
outputs=[reconstructed_output, reconstructed_image_group, reconstruct_btn]
)
# --- Secure System Tab ---
with gr.TabItem("β
The Suraksh.AI Solution"):
with gr.Group(elem_classes="narrative-section"):
gr.HTML('<h2 class="narrative-header">The Solution: Verification with FHE</h2>')
gr.HTML("""<div class="info-card"><h3>The Locked Box Analogy</h3><p>With Suraksh.AI, your biometric data is encrypted inside a "locked box" before it ever leaves your device. We can perform the verification on the encrypted data without ever seeing your real face. It's mathematically impossible for us to decrypt it.</p></div>""")
with gr.Row():
with gr.Column():
rec_ref_img = create_image_selection_ui("1. Provide Reference Image", EXAMPLE_IMAGES_ENROLL)
with gr.Group(visible=False) as rec_ref_features_group:
rec_ref_raw_features = gr.JSON(label="Raw Features (Plaintext)")
rec_ref_encrypted_features = gr.Textbox(label="Encrypted Features (Ciphertext)", interactive=False, lines=5)
with gr.Column():
rec_probe_img = create_image_selection_ui("2. Provide Probe Image", EXAMPLE_IMAGES_AUTH)
with gr.Group(visible=False) as rec_probe_features_group:
rec_probe_raw_features = gr.JSON(label="Raw Features (Plaintext)")
rec_probe_encrypted_features = gr.Textbox(label="Encrypted Features (Ciphertext)", interactive=False, lines=5)
with gr.Accordion("Advanced Settings", open=False):
rec_threshold = gr.Slider(-512*5, 512*5, value=133, label="Match Strictness", info="A higher value means a stricter match is required.")
rec_sec_level = gr.Dropdown(SECURITYLEVELS, value="128", label="Security Level")
rec_run_btn = gr.Button("π Perform Secure 1:1 Match", variant="primary", size="lg")
rec_status = gr.HTML(elem_classes="status-text")
rec_result = gr.HTML()
def secure_recognition_flow(ref_img, probe_img, threshold, sec_level):
# Reset UI
yield "Initializing...", "", gr.update(visible=False), None, None, gr.update(visible=False), None, None
# Process Reference Image
yield "Extracting reference features...", "", gr.update(visible=False), None, None, gr.update(visible=False), None, None
ref_emb, _ = extract_embedding(ref_img, "enroll")
yield "Encrypting reference features...", "", gr.update(visible=True), {"embedding": ref_emb}, None, gr.update(visible=False), None, None
run_binary("./bin/encReference.bin", sec_level, "encrypt")
ref_ciphertext, _ = run_binary("./bin/encReference.bin", sec_level, "print")
# Process Probe Image
yield "β
Reference Encrypted. Extracting probe features...", "", gr.update(visible=True), {"embedding": ref_emb}, ref_ciphertext, gr.update(visible=False), None, None
probe_emb, _ = extract_embedding(probe_img, "auth")
yield "Encrypting probe features...", "", gr.update(visible=True), {"embedding": ref_emb}, ref_ciphertext, gr.update(visible=True), {"embedding": probe_emb}, None
run_binary("./bin/encProbe.bin", sec_level, "encrypt")
probe_ciphertext, _ = run_binary("./bin/encProbe.bin", sec_level, "print")
# Perform Match
yield "β
Probe Encrypted. Performing Secure Match...", "", gr.update(visible=True), {"embedding": ref_emb}, ref_ciphertext, gr.update(visible=True), {"embedding": probe_emb}, probe_ciphertext
run_binary("./bin/recDecision.bin", sec_level, "decision", threshold)
yield "β
Match Computed. Decrypting Result...", "", gr.update(visible=True), {"embedding": ref_emb}, ref_ciphertext, gr.update(visible=True), {"embedding": probe_emb}, probe_ciphertext
output, _ = run_binary("./bin/decDecision.bin", sec_level, "decision")
if output.strip().lower() == "match":
result_html = f"""<div class="result-container match-verified"><h2>β
MATCH VERIFIED</h2><p>Identity successfully confirmed under FHE.</p></div>"""
else:
result_html = f"""<div class="result-container no-match"><h2>β NO MATCH</h2><p>Identity verification failed.</p></div>"""
yield "Done!", result_html, gr.update(visible=True), {"embedding": ref_emb}, ref_ciphertext, gr.update(visible=True), {"embedding": probe_emb}, probe_ciphertext
rec_run_btn.click(
fn=secure_recognition_flow,
inputs=[rec_ref_img, rec_probe_img, rec_threshold, rec_sec_level],
outputs=[rec_status, rec_result, rec_ref_features_group, rec_ref_raw_features, rec_ref_encrypted_features, rec_probe_features_group, rec_probe_raw_features, rec_probe_encrypted_features]
)
# --- 1:N Search Demo ---
with gr.TabItem("π Face Search (1:N)"):
gr.HTML("""<div class="section-header"><h1>Who is this person?</h1><h2>A one-to-many search demo against an encrypted database.</h2></div>""")
with gr.Tabs():
# --- Secure System Tab ---
with gr.TabItem("β
The Suraksh.AI Solution"):
with gr.Group(elem_classes="narrative-section"):
gr.HTML('<h2 class="narrative-header">Building and Searching a Secure Database</h2>')
gr.HTML("""<div class="info-card"><h3>From Verification to Identification</h3><p>This demo shows how FHE can be used to search for a person in a database without ever decrypting the database itself. This is ideal for large-scale, privacy-preserving identification systems.</p></div>""")
with gr.Row():
with gr.Column():
gr.HTML('<h3 class="step-header">1. Enroll Subjects into DB</h3>')
search_enroll_img = create_image_selection_ui("Select Image to Enroll", EXAMPLE_IMAGES_ENROLL)
search_enroll_btn = gr.Button("β Encrypt & Add to Database", variant="secondary")
with gr.Group(visible=False) as enroll_features_group:
enroll_raw_features = gr.JSON(label="Raw Features (Plaintext)")
enroll_encrypted_features = gr.Textbox(label="Encrypted Features (Ciphertext)", interactive=False, lines=5)
search_enroll_status = gr.HTML()
with gr.Column():
gr.HTML('<h3 class="step-header">2. Search for a Subject</h3>')
search_probe_img = create_image_selection_ui("Select Image to Search", EXAMPLE_IMAGES_AUTH)
search_run_btn = gr.Button("π Perform Secure 1:N Search", variant="primary", size="lg")
with gr.Group(visible=False) as search_features_group:
search_raw_features = gr.JSON(label="Raw Features (Plaintext)")
search_encrypted_features = gr.Textbox(label="Encrypted Features (Ciphertext)", interactive=False, lines=5)
search_status = gr.HTML(elem_classes="status-text")
search_result = gr.HTML()
search_result_image = gr.Image(label="Found Reference Image", interactive=False, visible=False)
with gr.Accordion("Advanced Settings", open=False):
search_threshold = gr.Slider(-512*5, 512*5, value=133, label="Match Strictness")
search_sec_level = gr.Dropdown(SECURITYLEVELS, value="128", label="Security Level")
def secure_enroll_flow(image, sec_level):
global DB_SUBJECT_COUNT, ENROLLED_SEARCH_IMAGES
if image is None: raise gr.Error("Please provide an image to enroll.")
current_id = DB_SUBJECT_COUNT
yield "Extracting features...", gr.update(visible=False), None, None
embedding, emb_path = extract_embedding(image, "search_enroll")
yield "Encrypting features...", gr.update(visible=True), {"embedding": embedding}, None
run_binary("./bin/search.bin", sec_level, "encRef", emb_path, current_id)
ciphertext, _ = run_binary("./bin/search.bin", sec_level, "printVectorCipher", "encRef", "print")
yield "Adding to secure database...", gr.update(visible=True), {"embedding": embedding}, ciphertext
run_binary("./bin/search.bin", sec_level, "addRef")
ENROLLED_SEARCH_IMAGES.append(image)
DB_SUBJECT_COUNT += 1
yield f"β
Subject with ID {current_id} added. Total subjects: {DB_SUBJECT_COUNT - 1}.", gr.update(visible=True), {"embedding": embedding}, ciphertext
def secure_search_flow(image, threshold, sec_level):
global ENROLLED_SEARCH_IMAGES
if image is None: raise gr.Error("Please provide an image to search.")
yield "Extracting probe features...", "", gr.update(visible=False), None, None, gr.update(visible=False)
embedding, emb_path = extract_embedding(image, "search_auth")
yield "Encrypting probe features...", "", gr.update(visible=True), {"embedding": embedding}, None, gr.update(visible=False)
run_binary("./bin/search.bin", sec_level, "encProbe", emb_path)
ciphertext, _ = run_binary("./bin/search.bin", sec_level, "printProbe", "print")
yield "β
Probe encrypted. Searching database...", "", gr.update(visible=True), {"embedding": embedding}, ciphertext, gr.update(visible=False)
run_binary("./bin/search.bin", sec_level, "search")
yield "β
Search complete. Decrypting results...", "", gr.update(visible=True), {"embedding": embedding}, ciphertext, gr.update(visible=False)
# output, _ = run_binary("./bin/search.bin", sec_level, "decDecisionClear", threshold)
output, _ = run_binary("./bin/search.bin", sec_level, "decScoreClear", threshold)
print(f"Search binary output: >>>{output}<<<")
lines = output.strip().split('\n')
decision = lines[0].lower()
if decision == "found":
try:
# Assuming output is "found\nID: <id>"
found_id_line = next(line for line in lines if "id:" in line.lower())
found_id = int(found_id_line.split(':')[1].strip())
# Binary ID is 1-based, list is 0-based
found_image_path = ENROLLED_SEARCH_IMAGES[found_id - 1]
result_html = f"""<div class="result-container match-verified"><h2>β
SUBJECT FOUND</h2><p>The subject was successfully found in the database with ID {found_id}.</p></div>"""
result_image_update = gr.update(value=found_image_path, visible=True)
except (StopIteration, IndexError, ValueError):
result_html = f"""<div class="result-container match-verified"><h2>β
SUBJECT FOUND</h2><p>Could not parse ID from binary output: {output.strip()}</p></div>"""
result_image_update = gr.update(visible=False)
else:
result_html = """<div class="result-container no-match"><h2>β NOT FOUND</h2><p>The subject was not found in the database.</p></div>"""
result_image_update = gr.update(visible=False)
yield "Done!", result_html, gr.update(visible=True), {"embedding": embedding}, ciphertext, result_image_update
search_enroll_btn.click(
fn=secure_enroll_flow,
inputs=[search_enroll_img, search_sec_level],
outputs=[search_enroll_status, enroll_features_group, enroll_raw_features, enroll_encrypted_features]
)
search_run_btn.click(
fn=secure_search_flow,
inputs=[search_probe_img, search_threshold, search_sec_level],
outputs=[search_status, search_result, search_features_group, search_raw_features, search_encrypted_features, search_result_image]
)
# --- Launch the Application ---
if __name__ == "__main__":
demo.launch() |