suriya7 commited on
Commit
7bdaeec
·
verified ·
1 Parent(s): 69d53e9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -18
app.py CHANGED
@@ -8,9 +8,6 @@ model = tf.keras.models.load_model('capuchin_bird_audio.h5')
8
  class_names = ['This Is Not A Capuchin bird','It is a capuchin Bird']
9
  # Function to preprocess input for the model
10
  def test_preprocess_1(file_path):
11
- _, file_extension = os.path.splitext(file_path)
12
-
13
- if file_extension.lower() == '.wav':
14
  file_contents = tf.io.read_file(file_path)
15
  wav, sample_rate = tf.audio.decode_wav(file_contents, desired_channels=1)
16
  wav = tf.squeeze(wav, axis=-1)
@@ -24,24 +21,19 @@ def test_preprocess_1(file_path):
24
  spectrogram = tf.expand_dims(spectrogram, axis=2)
25
  spectrogram = tf.expand_dims(spectrogram, axis=0)
26
  return spectrogram
27
- else:
28
- return False
29
 
30
  # Function to make predictions
31
  def predict_audio(wav):
32
  input_data = test_preprocess_1(wav)
33
- if input_data:
34
- prediction = model.predict(input_data)
35
-
36
- # Threshold logic
37
- if prediction > 0.5:
38
- result = class_names[1]
39
- else:
40
- result = class_names[0]
41
-
42
- return result
43
  else:
44
- return "please upload a wav format"
 
 
45
 
46
 
47
  # Gradio Interface
@@ -54,5 +46,4 @@ iface = gr.Interface(
54
  )
55
 
56
  # Launch the interface on localhost
57
- iface.launch(share=True)
58
-
 
8
  class_names = ['This Is Not A Capuchin bird','It is a capuchin Bird']
9
  # Function to preprocess input for the model
10
  def test_preprocess_1(file_path):
 
 
 
11
  file_contents = tf.io.read_file(file_path)
12
  wav, sample_rate = tf.audio.decode_wav(file_contents, desired_channels=1)
13
  wav = tf.squeeze(wav, axis=-1)
 
21
  spectrogram = tf.expand_dims(spectrogram, axis=2)
22
  spectrogram = tf.expand_dims(spectrogram, axis=0)
23
  return spectrogram
 
 
24
 
25
  # Function to make predictions
26
  def predict_audio(wav):
27
  input_data = test_preprocess_1(wav)
28
+ prediction = model.predict(input_data)
29
+
30
+ # Threshold logic
31
+ if prediction > 0.5:
32
+ result = class_names[1]
 
 
 
 
 
33
  else:
34
+ result = class_names[0]
35
+
36
+ return result
37
 
38
 
39
  # Gradio Interface
 
46
  )
47
 
48
  # Launch the interface on localhost
49
+ iface.launch(share=True)