Spaces:
Running
Running
Commit
Β·
32c0b8d
1
Parent(s):
b6b7d0e
merge
Browse files
app.py
CHANGED
|
@@ -1,26 +1,94 @@
|
|
| 1 |
from fastapi import FastAPI
|
| 2 |
from pydantic import BaseModel
|
| 3 |
from sentence_transformers import SentenceTransformer
|
|
|
|
| 4 |
from typing import List
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
bge_small_model = SentenceTransformer('BAAI/bge-small-en-v1.5', device="cpu")
|
|
|
|
|
|
|
|
|
|
| 8 |
all_mp_net_model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2', device="cpu")
|
|
|
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
# Request
|
| 14 |
class TextInput(BaseModel):
|
| 15 |
-
text: List[str]
|
| 16 |
model_name: str
|
| 17 |
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
@app.post("/get-embedding/")
|
| 20 |
async def get_embedding(input: TextInput):
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
else:
|
| 25 |
embeddings = bge_small_model.encode(input.text)
|
| 26 |
return {"embeddings": embeddings.tolist()}
|
|
|
|
| 1 |
from fastapi import FastAPI
|
| 2 |
from pydantic import BaseModel
|
| 3 |
from sentence_transformers import SentenceTransformer
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
| 5 |
from typing import List
|
| 6 |
+
import torch
|
| 7 |
+
from functools import lru_cache
|
| 8 |
+
import logging
|
| 9 |
|
| 10 |
+
# π§ Configure logging
|
| 11 |
+
logging.basicConfig(level=logging.INFO)
|
| 12 |
+
logger = logging.getLogger(__name__)
|
| 13 |
+
|
| 14 |
+
# π Initialize FastAPI app
|
| 15 |
+
app = FastAPI()
|
| 16 |
+
logger.info("Starting FastAPI application")
|
| 17 |
+
|
| 18 |
+
# π Load SentenceTransformer models
|
| 19 |
+
logger.info("Loading BGE small model...")
|
| 20 |
bge_small_model = SentenceTransformer('BAAI/bge-small-en-v1.5', device="cpu")
|
| 21 |
+
logger.info("Loaded BGE small model")
|
| 22 |
+
|
| 23 |
+
logger.info("Loading All-MPNet model...")
|
| 24 |
all_mp_net_model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2', device="cpu")
|
| 25 |
+
logger.info("Loaded All-MPNet model")
|
| 26 |
|
| 27 |
+
# π Load SPLADE model
|
| 28 |
+
logger.info("Loading SPLADE model...")
|
| 29 |
+
SPLADE_MODEL = AutoModelForMaskedLM.from_pretrained("naver/splade-cocondenser-ensembledistil", trust_remote_code=True)
|
| 30 |
+
SPLADE_TOKENIZER = AutoTokenizer.from_pretrained("naver/splade-cocondenser-ensembledistil")
|
| 31 |
+
SPLADE_MODEL.eval()
|
| 32 |
+
logger.info("Loaded SPLADE model")
|
| 33 |
|
| 34 |
+
# π¦ Request and response models
|
| 35 |
class TextInput(BaseModel):
|
| 36 |
+
text: List[str]
|
| 37 |
model_name: str
|
| 38 |
|
| 39 |
+
class SparseVector(BaseModel):
|
| 40 |
+
indices: List[int]
|
| 41 |
+
values: List[float]
|
| 42 |
+
|
| 43 |
+
# π§ LRU cacheable versions
|
| 44 |
+
@lru_cache(maxsize=1000)
|
| 45 |
+
def encode_dense_cached(model_name: str, text: str):
|
| 46 |
+
logger.info(f"Encoding dense text with model {model_name}: {text}")
|
| 47 |
+
if model_name == "BM":
|
| 48 |
+
embedding = all_mp_net_model.encode([text])[0].tolist()
|
| 49 |
+
else:
|
| 50 |
+
embedding = bge_small_model.encode([text])[0].tolist()
|
| 51 |
+
logger.info(f"Finished encoding dense text")
|
| 52 |
+
return embedding
|
| 53 |
+
|
| 54 |
+
@lru_cache(maxsize=1000)
|
| 55 |
+
def encode_splade_cached(text: str) -> SparseVector:
|
| 56 |
+
logger.info(f"Encoding SPLADE sparse vector: {text}")
|
| 57 |
+
inputs = SPLADE_TOKENIZER(text, return_tensors="pt", truncation=True)
|
| 58 |
+
with torch.no_grad():
|
| 59 |
+
outputs = SPLADE_MODEL(**inputs)
|
| 60 |
+
|
| 61 |
+
logits = outputs.logits[0]
|
| 62 |
+
relu_log = torch.log1p(torch.relu(logits))
|
| 63 |
+
nonzero = relu_log.nonzero(as_tuple=False)
|
| 64 |
+
|
| 65 |
+
if nonzero.shape[0] == 0:
|
| 66 |
+
logger.info("No non-zero values found in SPLADE output")
|
| 67 |
+
return SparseVector(indices=[], values=[])
|
| 68 |
+
|
| 69 |
+
vocab_indices = nonzero[:, 1]
|
| 70 |
+
values = relu_log[nonzero[:, 0], nonzero[:, 1]]
|
| 71 |
+
|
| 72 |
+
logger.info(f"SPLADE encoding complete with {len(vocab_indices)} dimensions")
|
| 73 |
+
return SparseVector(
|
| 74 |
+
indices=vocab_indices.cpu().numpy().tolist(),
|
| 75 |
+
values=values.cpu().numpy().tolist()
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
# π Main endpoint
|
| 79 |
@app.post("/get-embedding/")
|
| 80 |
async def get_embedding(input: TextInput):
|
| 81 |
+
logger.info(f"Received request with model: {input.model_name}, texts: {input.text}")
|
| 82 |
+
|
| 83 |
+
model_key = input.model_name.upper()
|
| 84 |
+
if model_key in {"BM", "BG"}:
|
| 85 |
+
embeddings = [encode_dense_cached(model_key, t) for t in input.text]
|
| 86 |
+
logger.info(f"Returning dense embeddings for {len(embeddings)} texts")
|
| 87 |
+
return {"type": "dense", "embeddings": embeddings}
|
| 88 |
+
elif model_key == "SPLADE":
|
| 89 |
+
sparse_vecs = [encode_splade_cached(t).model_dump() for t in input.text]
|
| 90 |
+
logger.info(f"Returning sparse embeddings for {len(sparse_vecs)} texts")
|
| 91 |
+
return {"type": "sparse", "embeddings": sparse_vecs}
|
| 92 |
else:
|
| 93 |
embeddings = bge_small_model.encode(input.text)
|
| 94 |
return {"embeddings": embeddings.tolist()}
|