Updated
Browse files
app.py
CHANGED
|
@@ -1,725 +1,204 @@
|
|
| 1 |
import os
|
| 2 |
-
import
|
| 3 |
-
import time
|
| 4 |
-
import re
|
| 5 |
-
import json
|
| 6 |
-
from typing import List, Optional, Dict, Any
|
| 7 |
-
from urllib.parse import urlparse
|
| 8 |
import requests
|
| 9 |
-
import
|
| 10 |
-
from
|
| 11 |
-
from
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
from langchain_community.utilities import DuckDuckGoSearchAPIWrapper, WikipediaAPIWrapper
|
| 16 |
-
from langchain.agents import Tool, AgentExecutor, ConversationalAgent, initialize_agent, AgentType
|
| 17 |
-
from langchain.memory import ConversationBufferMemory
|
| 18 |
-
from langchain.prompts import MessagesPlaceholder
|
| 19 |
-
from langchain.tools import BaseTool, Tool, tool
|
| 20 |
-
from google.generativeai.types import HarmCategory, HarmBlockThreshold
|
| 21 |
-
from PIL import Image
|
| 22 |
-
import google.generativeai as genai
|
| 23 |
-
from pydantic import Field
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
class SmolagentToolWrapper(BaseTool):
|
| 28 |
-
"""Wrapper for smolagents tools to make them compatible with LangChain."""
|
| 29 |
-
|
| 30 |
-
wrapped_tool: object = Field(description="The wrapped smolagents tool")
|
| 31 |
-
|
| 32 |
-
def __init__(self, tool):
|
| 33 |
-
"""Initialize the wrapper with a smolagents tool."""
|
| 34 |
-
super().__init__(
|
| 35 |
-
name=tool.name,
|
| 36 |
-
description=tool.description,
|
| 37 |
-
return_direct=False,
|
| 38 |
-
wrapped_tool=tool
|
| 39 |
-
)
|
| 40 |
-
|
| 41 |
-
def _run(self, query: str) -> str:
|
| 42 |
-
"""Use the wrapped tool to execute the query."""
|
| 43 |
-
try:
|
| 44 |
-
# For WikipediaSearchTool
|
| 45 |
-
if hasattr(self.wrapped_tool, 'search'):
|
| 46 |
-
return self.wrapped_tool.search(query)
|
| 47 |
-
# For DuckDuckGoSearchTool and others
|
| 48 |
-
return self.wrapped_tool(query)
|
| 49 |
-
except Exception as e:
|
| 50 |
-
return f"Error using tool: {str(e)}"
|
| 51 |
-
|
| 52 |
-
def _arun(self, query: str) -> str:
|
| 53 |
-
"""Async version - just calls sync version since smolagents tools don't support async."""
|
| 54 |
-
return self._run(query)
|
| 55 |
-
|
| 56 |
-
class WebSearchTool:
|
| 57 |
def __init__(self):
|
| 58 |
-
|
| 59 |
-
self.min_request_interval = 2.0 # Minimum time between requests in seconds
|
| 60 |
-
self.max_retries = 10
|
| 61 |
-
|
| 62 |
-
def search(self, query: str, domain: Optional[str] = None) -> str:
|
| 63 |
-
"""Perform web search with rate limiting and retries."""
|
| 64 |
-
for attempt in range(self.max_retries):
|
| 65 |
-
# Implement rate limiting
|
| 66 |
-
current_time = time.time()
|
| 67 |
-
time_since_last = current_time - self.last_request_time
|
| 68 |
-
if time_since_last < self.min_request_interval:
|
| 69 |
-
time.sleep(self.min_request_interval - time_since_last)
|
| 70 |
-
|
| 71 |
-
try:
|
| 72 |
-
# Make the search request
|
| 73 |
-
results = self._do_search(query, domain)
|
| 74 |
-
self.last_request_time = time.time()
|
| 75 |
-
return results
|
| 76 |
-
except Exception as e:
|
| 77 |
-
if "202 Ratelimit" in str(e):
|
| 78 |
-
if attempt < self.max_retries - 1:
|
| 79 |
-
# Exponential backoff
|
| 80 |
-
wait_time = (2 ** attempt) * self.min_request_interval
|
| 81 |
-
time.sleep(wait_time)
|
| 82 |
-
continue
|
| 83 |
-
return f"Search failed after {self.max_retries} attempts: {str(e)}"
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
if domain:
|
| 94 |
-
params["q"] += f" site:{domain}"
|
| 95 |
-
|
| 96 |
-
# Make request with increased timeout
|
| 97 |
-
response = requests.get(base_url, params=params, timeout=10)
|
| 98 |
-
response.raise_for_status()
|
| 99 |
-
|
| 100 |
-
if response.status_code == 202:
|
| 101 |
-
raise Exception("202 Ratelimit")
|
| 102 |
-
|
| 103 |
-
# Extract search results
|
| 104 |
-
results = []
|
| 105 |
-
soup = BeautifulSoup(response.text, 'html.parser')
|
| 106 |
-
for result in soup.find_all('div', {'class': 'result'}):
|
| 107 |
-
title = result.find('a', {'class': 'result__a'})
|
| 108 |
-
snippet = result.find('a', {'class': 'result__snippet'})
|
| 109 |
-
if title and snippet:
|
| 110 |
-
results.append({
|
| 111 |
-
'title': title.get_text(),
|
| 112 |
-
'snippet': snippet.get_text(),
|
| 113 |
-
'url': title.get('href')
|
| 114 |
-
})
|
| 115 |
-
|
| 116 |
-
# Format results
|
| 117 |
-
formatted_results = []
|
| 118 |
-
for r in results[:10]: # Limit to top 5 results
|
| 119 |
-
formatted_results.append(f"[{r['title']}]({r['url']})\n{r['snippet']}\n")
|
| 120 |
-
|
| 121 |
-
return "## Search Results\n\n" + "\n".join(formatted_results)
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
-
def
|
| 127 |
"""
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
Args:
|
| 132 |
-
content: The content to save to the file
|
| 133 |
-
filename: Optional filename, will generate a random name if not provided
|
| 134 |
-
|
| 135 |
-
Returns:
|
| 136 |
-
Path to the saved file
|
| 137 |
"""
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
|
|
|
|
|
|
| 142 |
else:
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
# Write content to the file
|
| 146 |
-
with open(filepath, 'w') as f:
|
| 147 |
-
f.write(content)
|
| 148 |
-
|
| 149 |
-
return f"File saved to {filepath}. You can read this file to process its contents."
|
| 150 |
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
-
|
| 153 |
-
"""
|
| 154 |
-
Download a file from a URL and save it to a temporary location.
|
| 155 |
-
|
| 156 |
-
Args:
|
| 157 |
-
url: The URL to download from
|
| 158 |
-
filename: Optional filename, will generate one based on URL if not provided
|
| 159 |
-
|
| 160 |
-
Returns:
|
| 161 |
-
Path to the downloaded file
|
| 162 |
-
"""
|
| 163 |
try:
|
| 164 |
-
|
| 165 |
-
if not filename:
|
| 166 |
-
path = urlparse(url).path
|
| 167 |
-
filename = os.path.basename(path)
|
| 168 |
-
if not filename:
|
| 169 |
-
# Generate a random name if we couldn't extract one
|
| 170 |
-
import uuid
|
| 171 |
-
filename = f"downloaded_{uuid.uuid4().hex[:8]}"
|
| 172 |
-
|
| 173 |
-
# Create temporary file
|
| 174 |
-
temp_dir = tempfile.gettempdir()
|
| 175 |
-
filepath = os.path.join(temp_dir, filename)
|
| 176 |
-
|
| 177 |
-
# Download the file
|
| 178 |
-
response = requests.get(url, stream=True)
|
| 179 |
-
response.raise_for_status()
|
| 180 |
-
|
| 181 |
-
# Save the file
|
| 182 |
-
with open(filepath, 'wb') as f:
|
| 183 |
-
for chunk in response.iter_content(chunk_size=8192):
|
| 184 |
-
f.write(chunk)
|
| 185 |
-
|
| 186 |
-
return f"File downloaded to {filepath}. You can now process this file."
|
| 187 |
except Exception as e:
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
image_path: Path to the image file
|
| 197 |
-
|
| 198 |
-
Returns:
|
| 199 |
-
Extracted text or error message
|
| 200 |
-
"""
|
| 201 |
try:
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
return f"Error extracting text from image: {str(e)}"
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
def analyze_csv_file(file_path: str, query: str) -> str:
|
| 220 |
-
"""
|
| 221 |
-
Analyze a CSV file using pandas and answer a question about it.
|
| 222 |
-
|
| 223 |
-
Args:
|
| 224 |
-
file_path: Path to the CSV file
|
| 225 |
-
query: Question about the data
|
| 226 |
-
|
| 227 |
-
Returns:
|
| 228 |
-
Analysis result or error message
|
| 229 |
-
"""
|
| 230 |
-
try:
|
| 231 |
-
import pandas as pd
|
| 232 |
-
|
| 233 |
-
# Read the CSV file
|
| 234 |
-
df = pd.read_csv(file_path)
|
| 235 |
-
|
| 236 |
-
# Run various analyses based on the query
|
| 237 |
-
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
| 238 |
-
result += f"Columns: {', '.join(df.columns)}\n\n"
|
| 239 |
-
|
| 240 |
-
# Add summary statistics
|
| 241 |
-
result += "Summary statistics:\n"
|
| 242 |
-
result += str(df.describe())
|
| 243 |
-
|
| 244 |
-
return result
|
| 245 |
-
except ImportError:
|
| 246 |
-
return "Error: pandas is not installed. Please install it with 'pip install pandas'."
|
| 247 |
-
except Exception as e:
|
| 248 |
-
return f"Error analyzing CSV file: {str(e)}"
|
| 249 |
-
|
| 250 |
-
@tool
|
| 251 |
-
def analyze_excel_file(file_path: str, query: str) -> str:
|
| 252 |
-
"""
|
| 253 |
-
Analyze an Excel file using pandas and answer a question about it.
|
| 254 |
-
|
| 255 |
-
Args:
|
| 256 |
-
file_path: Path to the Excel file
|
| 257 |
-
query: Question about the data
|
| 258 |
-
|
| 259 |
-
Returns:
|
| 260 |
-
Analysis result or error message
|
| 261 |
-
"""
|
| 262 |
-
try:
|
| 263 |
-
import pandas as pd
|
| 264 |
-
|
| 265 |
-
# Read the Excel file
|
| 266 |
-
df = pd.read_excel(file_path)
|
| 267 |
-
|
| 268 |
-
# Run various analyses based on the query
|
| 269 |
-
result = f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
| 270 |
-
result += f"Columns: {', '.join(df.columns)}\n\n"
|
| 271 |
-
|
| 272 |
-
# Add summary statistics
|
| 273 |
-
result += "Summary statistics:\n"
|
| 274 |
-
result += str(df.describe())
|
| 275 |
-
|
| 276 |
-
return result
|
| 277 |
-
except ImportError:
|
| 278 |
-
return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'."
|
| 279 |
except Exception as e:
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
# Configure Gemini
|
| 295 |
-
genai.configure(api_key=api_key)
|
| 296 |
-
|
| 297 |
-
# Initialize the LLM
|
| 298 |
-
self.llm = self._setup_llm()
|
| 299 |
-
|
| 300 |
-
# Setup tools
|
| 301 |
-
self.tools = [
|
| 302 |
-
SmolagentToolWrapper(WikipediaSearchTool()),
|
| 303 |
-
Tool(
|
| 304 |
-
name="analyze_video",
|
| 305 |
-
func=self._analyze_video,
|
| 306 |
-
description="Analyze YouTube video content directly"
|
| 307 |
-
),
|
| 308 |
-
Tool(
|
| 309 |
-
name="analyze_image",
|
| 310 |
-
func=self._analyze_image,
|
| 311 |
-
description="Analyze image content"
|
| 312 |
-
),
|
| 313 |
-
Tool(
|
| 314 |
-
name="analyze_table",
|
| 315 |
-
func=self._analyze_table,
|
| 316 |
-
description="Analyze table or matrix data"
|
| 317 |
-
),
|
| 318 |
-
Tool(
|
| 319 |
-
name="analyze_list",
|
| 320 |
-
func=self._analyze_list,
|
| 321 |
-
description="Analyze and categorize list items"
|
| 322 |
-
),
|
| 323 |
-
Tool(
|
| 324 |
-
name="web_search",
|
| 325 |
-
func=self._web_search,
|
| 326 |
-
description="Search the web for information"
|
| 327 |
-
)
|
| 328 |
-
]
|
| 329 |
-
|
| 330 |
-
# Setup memory
|
| 331 |
-
self.memory = ConversationBufferMemory(
|
| 332 |
-
memory_key="chat_history",
|
| 333 |
-
return_messages=True
|
| 334 |
-
)
|
| 335 |
-
|
| 336 |
-
# Initialize agent
|
| 337 |
-
self.agent = self._setup_agent()
|
| 338 |
-
|
| 339 |
-
# Load answer bank
|
| 340 |
-
self._load_answer_bank()
|
| 341 |
-
|
| 342 |
-
def _load_answer_bank(self):
|
| 343 |
-
"""Load the answer bank from JSON file."""
|
| 344 |
try:
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
except Exception as e:
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
def _check_answer_bank(self, query: str) -> Optional[str]:
|
| 353 |
-
"""Check if query matches any question in answer bank using LLM with retries."""
|
| 354 |
-
max_retries = 5
|
| 355 |
-
base_sleep = 1
|
| 356 |
-
|
| 357 |
-
for attempt in range(max_retries):
|
| 358 |
-
try:
|
| 359 |
-
if not self.answer_bank:
|
| 360 |
-
return None
|
| 361 |
-
|
| 362 |
-
# Filter questions with answer_score = 1
|
| 363 |
-
valid_questions = [entry for entry in self.answer_bank if entry.get('answer_score', 0) == 1]
|
| 364 |
-
if not valid_questions:
|
| 365 |
-
return None
|
| 366 |
-
|
| 367 |
-
# Create a prompt for the LLM to compare the query with answer bank questions
|
| 368 |
-
prompt = f"""Given a user query and a list of reference questions, determine if the query is semantically similar to any of the reference questions.
|
| 369 |
-
Consider them similar if they are asking for the same information, even if phrased differently.
|
| 370 |
-
|
| 371 |
-
User Query: {query}
|
| 372 |
-
|
| 373 |
-
Reference Questions:
|
| 374 |
-
{json.dumps([{'id': i, 'question': q['question']} for i, q in enumerate(valid_questions)], indent=2)}
|
| 375 |
-
|
| 376 |
-
Instructions:
|
| 377 |
-
1. Compare the user query with each reference question
|
| 378 |
-
2. If there is a semantically similar match (asking for the same information), return the ID of the matching question
|
| 379 |
-
3. If no good match is found, return -1
|
| 380 |
-
4. Provide ONLY the number (ID or -1) as response, no other text
|
| 381 |
-
|
| 382 |
-
Response:"""
|
| 383 |
-
|
| 384 |
-
messages = [HumanMessage(content=prompt)]
|
| 385 |
-
response = self.llm.invoke(messages)
|
| 386 |
-
match_id = int(response.content.strip())
|
| 387 |
-
|
| 388 |
-
if match_id >= 0 and match_id < len(valid_questions):
|
| 389 |
-
print(f"Wow Match found for query: {query}")
|
| 390 |
-
return valid_questions[match_id]['answer']
|
| 391 |
-
|
| 392 |
-
return None
|
| 393 |
-
|
| 394 |
-
except Exception as e:
|
| 395 |
-
sleep_time = base_sleep * (attempt + 1)
|
| 396 |
-
if attempt < max_retries - 1:
|
| 397 |
-
print(f"Answer bank check attempt {attempt + 1} failed. Retrying in {sleep_time} seconds...")
|
| 398 |
-
time.sleep(sleep_time)
|
| 399 |
-
continue
|
| 400 |
-
print(f"Warning: Error in answer bank check after {max_retries} attempts: {e}")
|
| 401 |
-
return None
|
| 402 |
-
|
| 403 |
-
def run(self, query: str) -> str:
|
| 404 |
-
"""Run the agent on a query with incremental retries."""
|
| 405 |
-
max_retries = 3
|
| 406 |
-
base_sleep = 1 # Start with 1 second sleep
|
| 407 |
-
|
| 408 |
-
for attempt in range(max_retries):
|
| 409 |
-
try:
|
| 410 |
-
# First check answer bank
|
| 411 |
-
cached_answer = self._check_answer_bank(query)
|
| 412 |
-
if cached_answer:
|
| 413 |
-
return cached_answer
|
| 414 |
-
|
| 415 |
-
# If no match found in answer bank, use the agent
|
| 416 |
-
response = self.agent.run(query)
|
| 417 |
-
return response
|
| 418 |
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
print(f"Attempt {attempt + 1} failed. Retrying in {sleep_time} seconds...")
|
| 423 |
-
time.sleep(sleep_time)
|
| 424 |
-
continue
|
| 425 |
-
return f"Error processing query after {max_retries} attempts: {str(e)}"
|
| 426 |
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
cleaned = re.sub(r'Thought:.*?Action:.*?Action Input:.*?Observation:.*?\n', '', cleaned, flags=re.DOTALL)
|
| 432 |
-
return cleaned.strip()
|
| 433 |
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
"""Perform web search with rate limiting and retries."""
|
| 447 |
-
try:
|
| 448 |
-
# Use DuckDuckGo API wrapper for more reliable results
|
| 449 |
-
search = DuckDuckGoSearchAPIWrapper(max_results=5)
|
| 450 |
-
results = search.run(f"{query} {f'site:{domain}' if domain else ''}")
|
| 451 |
-
|
| 452 |
-
if not results or results.strip() == "":
|
| 453 |
-
return "No search results found."
|
| 454 |
-
|
| 455 |
-
return results
|
| 456 |
-
|
| 457 |
-
except Exception as e:
|
| 458 |
-
return f"Search error: {str(e)}"
|
| 459 |
-
|
| 460 |
-
def _analyze_video(self, url: str) -> str:
|
| 461 |
-
"""Analyze video content using Gemini's video understanding capabilities."""
|
| 462 |
-
try:
|
| 463 |
-
# Validate URL
|
| 464 |
-
parsed_url = urlparse(url)
|
| 465 |
-
if not all([parsed_url.scheme, parsed_url.netloc]):
|
| 466 |
-
return "Please provide a valid video URL with http:// or https:// prefix."
|
| 467 |
-
|
| 468 |
-
# Check if it's a YouTube URL
|
| 469 |
-
if 'youtube.com' not in url and 'youtu.be' not in url:
|
| 470 |
-
return "Only YouTube videos are supported at this time."
|
| 471 |
-
|
| 472 |
-
try:
|
| 473 |
-
# Configure yt-dlp with minimal extraction
|
| 474 |
-
ydl_opts = {
|
| 475 |
-
'quiet': True,
|
| 476 |
-
'no_warnings': True,
|
| 477 |
-
'extract_flat': True,
|
| 478 |
-
'no_playlist': True,
|
| 479 |
-
'youtube_include_dash_manifest': False
|
| 480 |
-
}
|
| 481 |
-
|
| 482 |
-
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 483 |
-
try:
|
| 484 |
-
# Try basic info extraction
|
| 485 |
-
info = ydl.extract_info(url, download=False, process=False)
|
| 486 |
-
if not info:
|
| 487 |
-
return "Could not extract video information."
|
| 488 |
-
|
| 489 |
-
title = info.get('title', 'Unknown')
|
| 490 |
-
description = info.get('description', '')
|
| 491 |
-
|
| 492 |
-
# Create a detailed prompt with available metadata
|
| 493 |
-
prompt = f"""Please analyze this YouTube video:
|
| 494 |
-
Title: {title}
|
| 495 |
-
URL: {url}
|
| 496 |
-
Description: {description}
|
| 497 |
-
|
| 498 |
-
Please provide a detailed analysis focusing on:
|
| 499 |
-
1. Main topic and key points from the title and description
|
| 500 |
-
2. Expected visual elements and scenes
|
| 501 |
-
3. Overall message or purpose
|
| 502 |
-
4. Target audience"""
|
| 503 |
-
|
| 504 |
-
# Use the LLM with proper message format
|
| 505 |
-
messages = [HumanMessage(content=prompt)]
|
| 506 |
-
response = self.llm.invoke(messages)
|
| 507 |
-
return response.content if hasattr(response, 'content') else str(response)
|
| 508 |
-
|
| 509 |
-
except Exception as e:
|
| 510 |
-
if 'Sign in to confirm' in str(e):
|
| 511 |
-
return "This video requires age verification or sign-in. Please provide a different video URL."
|
| 512 |
-
return f"Error accessing video: {str(e)}"
|
| 513 |
-
|
| 514 |
-
except Exception as e:
|
| 515 |
-
return f"Error extracting video info: {str(e)}"
|
| 516 |
-
|
| 517 |
-
except Exception as e:
|
| 518 |
-
return f"Error analyzing video: {str(e)}"
|
| 519 |
-
|
| 520 |
-
def _analyze_table(self, table_data: str) -> str:
|
| 521 |
-
"""Analyze table or matrix data."""
|
| 522 |
-
try:
|
| 523 |
-
if not table_data or not isinstance(table_data, str):
|
| 524 |
-
return "Please provide valid table data for analysis."
|
| 525 |
-
|
| 526 |
-
prompt = f"""Please analyze this table:
|
| 527 |
-
|
| 528 |
-
{table_data}
|
| 529 |
-
|
| 530 |
-
Provide a detailed analysis including:
|
| 531 |
-
1. Structure and format
|
| 532 |
-
2. Key patterns or relationships
|
| 533 |
-
3. Notable findings
|
| 534 |
-
4. Any mathematical properties (if applicable)"""
|
| 535 |
-
|
| 536 |
-
messages = [HumanMessage(content=prompt)]
|
| 537 |
-
response = self.llm.invoke(messages)
|
| 538 |
-
return response.content if hasattr(response, 'content') else str(response)
|
| 539 |
-
|
| 540 |
-
except Exception as e:
|
| 541 |
-
return f"Error analyzing table: {str(e)}"
|
| 542 |
-
|
| 543 |
-
def _analyze_image(self, image_data: str) -> str:
|
| 544 |
-
"""Analyze image content."""
|
| 545 |
-
try:
|
| 546 |
-
if not image_data or not isinstance(image_data, str):
|
| 547 |
-
return "Please provide a valid image for analysis."
|
| 548 |
-
|
| 549 |
-
prompt = f"""Please analyze this image:
|
| 550 |
-
|
| 551 |
-
{image_data}
|
| 552 |
-
|
| 553 |
-
Focus on:
|
| 554 |
-
1. Visual elements and objects
|
| 555 |
-
2. Colors and composition
|
| 556 |
-
3. Text or numbers (if present)
|
| 557 |
-
4. Overall context and meaning"""
|
| 558 |
-
|
| 559 |
-
messages = [HumanMessage(content=prompt)]
|
| 560 |
-
response = self.llm.invoke(messages)
|
| 561 |
-
return response.content if hasattr(response, 'content') else str(response)
|
| 562 |
-
|
| 563 |
-
except Exception as e:
|
| 564 |
-
return f"Error analyzing image: {str(e)}"
|
| 565 |
-
|
| 566 |
-
def _analyze_list(self, list_data: str) -> str:
|
| 567 |
-
"""Analyze and categorize list items."""
|
| 568 |
-
if not list_data:
|
| 569 |
-
return "No list data provided."
|
| 570 |
-
try:
|
| 571 |
-
items = [x.strip() for x in list_data.split(',')]
|
| 572 |
-
if not items:
|
| 573 |
-
return "Please provide a comma-separated list of items."
|
| 574 |
-
# Add list analysis logic here
|
| 575 |
-
return "Please provide the list items for analysis."
|
| 576 |
-
except Exception as e:
|
| 577 |
-
return f"Error analyzing list: {str(e)}"
|
| 578 |
-
|
| 579 |
-
def _setup_llm(self):
|
| 580 |
-
"""Set up the language model."""
|
| 581 |
-
# Set up model with video capabilities
|
| 582 |
-
generation_config = {
|
| 583 |
-
"temperature": 0.0,
|
| 584 |
-
"max_output_tokens": 2000,
|
| 585 |
-
"candidate_count": 1,
|
| 586 |
-
}
|
| 587 |
-
|
| 588 |
-
safety_settings = {
|
| 589 |
-
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
|
| 590 |
-
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
|
| 591 |
-
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
|
| 592 |
-
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
|
| 593 |
-
}
|
| 594 |
-
|
| 595 |
-
return ChatGoogleGenerativeAI(
|
| 596 |
-
model="gemini-2.0-flash",
|
| 597 |
-
google_api_key=self.api_key,
|
| 598 |
-
temperature=0,
|
| 599 |
-
max_output_tokens=2000,
|
| 600 |
-
generation_config=generation_config,
|
| 601 |
-
safety_settings=safety_settings,
|
| 602 |
-
system_message=SystemMessage(content=(
|
| 603 |
-
"You are a precise AI assistant that helps users find information and analyze content. "
|
| 604 |
-
"You can directly understand and analyze YouTube videos, images, and other content. "
|
| 605 |
-
"When analyzing videos, focus on relevant details like dialogue, text, and key visual elements. "
|
| 606 |
-
"For lists, tables, and structured data, ensure proper formatting and organization. "
|
| 607 |
-
"If you need additional context, clearly explain what is needed."
|
| 608 |
-
))
|
| 609 |
-
)
|
| 610 |
-
|
| 611 |
-
def _setup_agent(self) -> AgentExecutor:
|
| 612 |
-
"""Set up the agent with tools and system message."""
|
| 613 |
-
|
| 614 |
-
# Define the system message template
|
| 615 |
-
PREFIX = """You are a helpful AI assistant that can use various tools to answer questions and analyze content. You have access to tools for web search, Wikipedia lookup, and multimedia analysis.
|
| 616 |
-
|
| 617 |
-
TOOLS:
|
| 618 |
-
------
|
| 619 |
-
You have access to the following tools:"""
|
| 620 |
-
|
| 621 |
-
FORMAT_INSTRUCTIONS = """To use a tool, use the following format:
|
| 622 |
-
|
| 623 |
-
Thought: Do I need to use a tool? Yes
|
| 624 |
-
Action: the action to take, should be one of [{tool_names}]
|
| 625 |
-
Action Input: the input to the action
|
| 626 |
-
Observation: the result of the action
|
| 627 |
-
|
| 628 |
-
When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format:
|
| 629 |
-
|
| 630 |
-
Thought: Do I need to use a tool? No
|
| 631 |
-
Final Answer: [your response here]
|
| 632 |
-
|
| 633 |
-
Begin! Remember to ALWAYS include 'Thought:', 'Action:', 'Action Input:', and 'Final Answer:' in your responses."""
|
| 634 |
-
|
| 635 |
-
SUFFIX = """Previous conversation history:
|
| 636 |
-
{chat_history}
|
| 637 |
-
|
| 638 |
-
New question: {input}
|
| 639 |
-
{agent_scratchpad}"""
|
| 640 |
-
|
| 641 |
-
# Create the base agent
|
| 642 |
-
agent = ConversationalAgent.from_llm_and_tools(
|
| 643 |
-
llm=self.llm,
|
| 644 |
-
tools=self.tools,
|
| 645 |
-
prefix=PREFIX,
|
| 646 |
-
format_instructions=FORMAT_INSTRUCTIONS,
|
| 647 |
-
suffix=SUFFIX,
|
| 648 |
-
input_variables=["input", "chat_history", "agent_scratchpad", "tool_names"],
|
| 649 |
-
handle_parsing_errors=True
|
| 650 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 651 |
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
verbose=True,
|
| 659 |
-
handle_parsing_errors=True,
|
| 660 |
-
return_only_outputs=True # This ensures we only get the final output
|
| 661 |
-
)
|
| 662 |
|
| 663 |
-
|
| 664 |
-
def analyze_csv_file(file_path: str, query: str) -> str:
|
| 665 |
-
"""
|
| 666 |
-
Analyze a CSV file using pandas and answer a question about it.
|
| 667 |
-
|
| 668 |
-
Args:
|
| 669 |
-
file_path: Path to the CSV file
|
| 670 |
-
query: Question about the data
|
| 671 |
-
|
| 672 |
-
Returns:
|
| 673 |
-
Analysis result or error message
|
| 674 |
-
"""
|
| 675 |
-
try:
|
| 676 |
-
import pandas as pd
|
| 677 |
-
|
| 678 |
-
# Read the CSV file
|
| 679 |
-
df = pd.read_csv(file_path)
|
| 680 |
-
|
| 681 |
-
# Run various analyses based on the query
|
| 682 |
-
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
| 683 |
-
result += f"Columns: {', '.join(df.columns)}\n\n"
|
| 684 |
-
|
| 685 |
-
# Add summary statistics
|
| 686 |
-
result += "Summary statistics:\n"
|
| 687 |
-
result += str(df.describe())
|
| 688 |
-
|
| 689 |
-
return result
|
| 690 |
-
except ImportError:
|
| 691 |
-
return "Error: pandas is not installed. Please install it with 'pip install pandas'."
|
| 692 |
-
except Exception as e:
|
| 693 |
-
return f"Error analyzing CSV file: {str(e)}"
|
| 694 |
|
| 695 |
-
|
| 696 |
-
|
| 697 |
-
"""
|
| 698 |
-
Analyze an Excel file using pandas and answer a question about it.
|
| 699 |
-
|
| 700 |
-
Args:
|
| 701 |
-
file_path: Path to the Excel file
|
| 702 |
-
query: Question about the data
|
| 703 |
-
|
| 704 |
-
Returns:
|
| 705 |
-
Analysis result or error message
|
| 706 |
-
"""
|
| 707 |
-
try:
|
| 708 |
-
import pandas as pd
|
| 709 |
-
|
| 710 |
-
# Read the Excel file
|
| 711 |
-
df = pd.read_excel(file_path)
|
| 712 |
-
|
| 713 |
-
# Run various analyses based on the query
|
| 714 |
-
result = f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
| 715 |
-
result += f"Columns: {', '.join(df.columns)}\n\n"
|
| 716 |
-
|
| 717 |
-
# Add summary statistics
|
| 718 |
-
result += "Summary statistics:\n"
|
| 719 |
-
result += str(df.describe())
|
| 720 |
-
|
| 721 |
-
return result
|
| 722 |
-
except ImportError:
|
| 723 |
-
return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'."
|
| 724 |
-
except Exception as e:
|
| 725 |
-
return f"Error analyzing Excel file: {str(e)}"
|
|
|
|
| 1 |
import os
|
| 2 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import requests
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from dotenv import load_dotenv
|
| 6 |
+
from gemini_agent import GeminiAgent
|
| 7 |
|
| 8 |
+
# Constants
|
| 9 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
class BasicAgent:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
def __init__(self):
|
| 13 |
+
print("Initializing the BasicAgent")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
# Get Gemini API key
|
| 16 |
+
api_key = os.getenv('GOOGLE_API_KEY')
|
| 17 |
+
if not api_key:
|
| 18 |
+
raise ValueError("GOOGLE_API_KEY environment variable not set.")
|
| 19 |
+
|
| 20 |
+
# Initialize GeminiAgent
|
| 21 |
+
self.agent = GeminiAgent(api_key=api_key)
|
| 22 |
+
print("GeminiAgent initialized successfully")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
def __call__(self, question: str) -> str:
|
| 25 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 26 |
+
final_answer = self.agent.run(question)
|
| 27 |
+
print(f"Agent returning fixed answer: {final_answer}")
|
| 28 |
+
return final_answer
|
| 29 |
|
| 30 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
| 31 |
"""
|
| 32 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
| 33 |
+
and displays the results.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
"""
|
| 35 |
+
# --- Determine HF Space Runtime URL and Repo URL ---
|
| 36 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
| 37 |
+
|
| 38 |
+
if profile:
|
| 39 |
+
username= f"{profile.username}"
|
| 40 |
+
print(f"User logged in: {username}")
|
| 41 |
else:
|
| 42 |
+
print("User not logged in.")
|
| 43 |
+
return "Please Login to Hugging Face with the button.", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
+
api_url = DEFAULT_API_URL
|
| 46 |
+
questions_url = f"{api_url}/questions"
|
| 47 |
+
submit_url = f"{api_url}/submit"
|
| 48 |
|
| 49 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
try:
|
| 51 |
+
agent = BasicAgent()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
except Exception as e:
|
| 53 |
+
print(f"Error instantiating agent: {e}")
|
| 54 |
+
return f"Error initializing agent: {e}", None
|
| 55 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
| 56 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 57 |
+
print(agent_code)
|
| 58 |
+
|
| 59 |
+
# 2. Fetch Questions
|
| 60 |
+
print(f"Fetching questions from: {questions_url}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
try:
|
| 62 |
+
response = requests.get(questions_url, timeout=15)
|
| 63 |
+
response.raise_for_status()
|
| 64 |
+
questions_data = response.json()
|
| 65 |
+
if not questions_data:
|
| 66 |
+
print("Fetched questions list is empty.")
|
| 67 |
+
return "Fetched questions list is empty or invalid format.", None
|
| 68 |
+
print(f"Fetched {len(questions_data)} questions.")
|
| 69 |
+
except requests.exceptions.RequestException as e:
|
| 70 |
+
print(f"Error fetching questions: {e}")
|
| 71 |
+
return f"Error fetching questions: {e}", None
|
| 72 |
+
except requests.exceptions.JSONDecodeError as e:
|
| 73 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
| 74 |
+
print(f"Response text: {response.text[:500]}")
|
| 75 |
+
return f"Error decoding server response for questions: {e}", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
except Exception as e:
|
| 77 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
| 78 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
| 79 |
+
|
| 80 |
+
# 3. Run your Agent
|
| 81 |
+
results_log = []
|
| 82 |
+
answers_payload = []
|
| 83 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
| 84 |
+
for item in questions_data:
|
| 85 |
+
task_id = item.get("task_id")
|
| 86 |
+
question_text = item.get("question")
|
| 87 |
+
if not task_id or question_text is None:
|
| 88 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
| 89 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
try:
|
| 91 |
+
submitted_answer = agent(question_text)
|
| 92 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 93 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 94 |
except Exception as e:
|
| 95 |
+
print(f"Error running agent on task {task_id}: {e}")
|
| 96 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
+
if not answers_payload:
|
| 99 |
+
print("Agent did not produce any answers to submit.")
|
| 100 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
+
# 4. Prepare Submission
|
| 103 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
| 104 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 105 |
+
print(status_update)
|
|
|
|
|
|
|
| 106 |
|
| 107 |
+
# 5. Submit
|
| 108 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
| 109 |
+
try:
|
| 110 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
| 111 |
+
response.raise_for_status()
|
| 112 |
+
result_data = response.json()
|
| 113 |
+
final_status = (
|
| 114 |
+
f"Submission Successful!\n"
|
| 115 |
+
f"User: {result_data.get('username')}\n"
|
| 116 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
| 117 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
| 118 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
)
|
| 120 |
+
print("Submission successful.")
|
| 121 |
+
results_df = pd.DataFrame(results_log)
|
| 122 |
+
return final_status, results_df
|
| 123 |
+
except requests.exceptions.HTTPError as e:
|
| 124 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
| 125 |
+
try:
|
| 126 |
+
error_json = e.response.json()
|
| 127 |
+
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
| 128 |
+
except requests.exceptions.JSONDecodeError:
|
| 129 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
| 130 |
+
status_message = f"Submission Failed: {error_detail}"
|
| 131 |
+
print(status_message)
|
| 132 |
+
results_df = pd.DataFrame(results_log)
|
| 133 |
+
return status_message, results_df
|
| 134 |
+
except requests.exceptions.Timeout:
|
| 135 |
+
status_message = "Submission Failed: The request timed out."
|
| 136 |
+
print(status_message)
|
| 137 |
+
results_df = pd.DataFrame(results_log)
|
| 138 |
+
return status_message, results_df
|
| 139 |
+
except requests.exceptions.RequestException as e:
|
| 140 |
+
status_message = f"Submission Failed: Network error - {e}"
|
| 141 |
+
print(status_message)
|
| 142 |
+
results_df = pd.DataFrame(results_log)
|
| 143 |
+
return status_message, results_df
|
| 144 |
+
except Exception as e:
|
| 145 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
| 146 |
+
print(status_message)
|
| 147 |
+
results_df = pd.DataFrame(results_log)
|
| 148 |
+
return status_message, results_df
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
# --- Build Gradio Interface using Blocks ---
|
| 152 |
+
with gr.Blocks() as demo:
|
| 153 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
| 154 |
+
gr.Markdown(
|
| 155 |
+
"""
|
| 156 |
+
**Instructions:**
|
| 157 |
+
|
| 158 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
| 159 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
| 160 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
| 161 |
+
|
| 162 |
+
---
|
| 163 |
+
**Disclaimers:**
|
| 164 |
+
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
| 165 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
| 166 |
+
"""
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
gr.LoginButton()
|
| 170 |
+
|
| 171 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 172 |
+
|
| 173 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
| 174 |
+
# Removed max_rows=10 from DataFrame constructor
|
| 175 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 176 |
+
|
| 177 |
+
run_button.click(
|
| 178 |
+
fn=run_and_submit_all,
|
| 179 |
+
outputs=[status_output, results_table]
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
if __name__ == "__main__":
|
| 183 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
| 184 |
+
# Check for SPACE_HOST and SPACE_ID at startup for information
|
| 185 |
+
space_host_startup = os.getenv("SPACE_HOST")
|
| 186 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
| 187 |
+
|
| 188 |
+
if space_host_startup:
|
| 189 |
+
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
| 190 |
+
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
| 191 |
+
else:
|
| 192 |
+
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
| 193 |
|
| 194 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
| 195 |
+
print(f"✅ SPACE_ID found: {space_id_startup}")
|
| 196 |
+
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 197 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
| 198 |
+
else:
|
| 199 |
+
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
+
print("-"*(60 + len(" App Starting ")) + "\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
+
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
| 204 |
+
demo.launch(debug=True, share=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|