Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,47 +5,46 @@ import base64
|
|
5 |
from PIL import Image
|
6 |
import os
|
7 |
|
8 |
-
#
|
9 |
hf_api_key = os.getenv("HUGGINGFACE_TOKEN")
|
|
|
10 |
|
11 |
# API URLs
|
12 |
ANALYSIS_API_URL = "https://api-inference.huggingface.co/models/dandelin/vilt-b32-finetuned-vqa"
|
13 |
GENERATION_API_URL = "https://api-inference.huggingface.co/models/thejagstudio/3d-animation-style-sdxl"
|
14 |
|
15 |
-
# Set headers with authorization
|
16 |
-
headers = {"Authorization": f"Bearer {hf_api_key}"}
|
17 |
-
|
18 |
# Function to query analysis (VQA) model
|
19 |
def query_analysis(image_bytes, question):
|
|
|
|
|
|
|
20 |
try:
|
21 |
-
payload = {
|
22 |
-
"inputs": {
|
23 |
-
"question": question,
|
24 |
-
"image": base64.b64encode(image_bytes).decode('utf-8')
|
25 |
-
}
|
26 |
-
}
|
27 |
response = requests.post(ANALYSIS_API_URL, headers=headers, json=payload)
|
28 |
-
response.raise_for_status()
|
29 |
-
|
30 |
-
return response.json()[0].get('answer', 'unspecified')
|
31 |
except Exception as e:
|
32 |
-
st.error(f"Error
|
33 |
return 'unspecified'
|
34 |
|
35 |
# Function to query image generation model
|
36 |
def query_generation(prompt, image_bytes):
|
|
|
|
|
|
|
|
|
37 |
try:
|
38 |
-
payload = {
|
39 |
-
"inputs": prompt,
|
40 |
-
"image": base64.b64encode(image_bytes).decode('utf-8')
|
41 |
-
}
|
42 |
response = requests.post(GENERATION_API_URL, headers=headers, json=payload)
|
43 |
-
response.raise_for_status()
|
44 |
return response.content
|
45 |
except Exception as e:
|
46 |
-
st.error(f"Error
|
47 |
return None
|
48 |
|
|
|
|
|
|
|
|
|
|
|
49 |
# Streamlit app title
|
50 |
st.title("Image Insight & Generation Studio 👻")
|
51 |
|
@@ -53,12 +52,12 @@ st.title("Image Insight & Generation Studio 👻")
|
|
53 |
uploaded_file = st.file_uploader("Upload an image...", type=["jpg", "jpeg", "png"])
|
54 |
|
55 |
if uploaded_file is not None:
|
56 |
-
# Display uploaded image
|
57 |
-
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
|
58 |
-
|
59 |
# Read image bytes
|
60 |
image_bytes = uploaded_file.read()
|
61 |
|
|
|
|
|
|
|
62 |
# Text input for additional description for image generation
|
63 |
user_prompt = st.text_input("Enter additional description for image generation (optional):")
|
64 |
|
@@ -69,32 +68,56 @@ if uploaded_file is not None:
|
|
69 |
clothing = query_analysis(image_bytes, "What is the person wearing and which color?")
|
70 |
hair_color = query_analysis(image_bytes, "What is the hair color of the person?")
|
71 |
facial_expression = query_analysis(image_bytes, "What is the facial expression of the person?")
|
|
|
72 |
|
73 |
# Build generation prompt based on VQA responses and user input
|
74 |
if gender.lower() == "female":
|
75 |
-
prompt = f"Create a
|
76 |
-
elif gender.lower() == "male":
|
77 |
-
prompt = f"Create a school-going boy with {hair_color} hair, wearing {clothing}, showing a {facial_expression}. {user_prompt}"
|
78 |
else:
|
79 |
-
prompt = f"Create a
|
80 |
-
|
81 |
# Call image generation API
|
82 |
with st.spinner("Generating the image..."):
|
83 |
generated_image_data = query_generation(prompt, image_bytes)
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
-
# Footer for better UI experience
|
98 |
st.markdown("---")
|
99 |
st.markdown("❤️🔥 *Made by Sujal Tamrakar*")
|
100 |
-
st.markdown("💡 *Powered by Hugging Face and Streamlit*")
|
|
|
5 |
from PIL import Image
|
6 |
import os
|
7 |
|
8 |
+
# Hugging Face API Key
|
9 |
hf_api_key = os.getenv("HUGGINGFACE_TOKEN")
|
10 |
+
headers = {"Authorization": f"Bearer {hf_api_key}"}
|
11 |
|
12 |
# API URLs
|
13 |
ANALYSIS_API_URL = "https://api-inference.huggingface.co/models/dandelin/vilt-b32-finetuned-vqa"
|
14 |
GENERATION_API_URL = "https://api-inference.huggingface.co/models/thejagstudio/3d-animation-style-sdxl"
|
15 |
|
|
|
|
|
|
|
16 |
# Function to query analysis (VQA) model
|
17 |
def query_analysis(image_bytes, question):
|
18 |
+
payload = {
|
19 |
+
"inputs": {"question": question, "image": base64.b64encode(image_bytes).decode('utf-8')}
|
20 |
+
}
|
21 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
response = requests.post(ANALYSIS_API_URL, headers=headers, json=payload)
|
23 |
+
response.raise_for_status()
|
24 |
+
return response.json()[0].get('answer', 'unspecified')
|
|
|
25 |
except Exception as e:
|
26 |
+
st.error(f"Error: {e}")
|
27 |
return 'unspecified'
|
28 |
|
29 |
# Function to query image generation model
|
30 |
def query_generation(prompt, image_bytes):
|
31 |
+
payload = {
|
32 |
+
"inputs": prompt,
|
33 |
+
"image": base64.b64encode(image_bytes).decode('utf-8')
|
34 |
+
}
|
35 |
try:
|
|
|
|
|
|
|
|
|
36 |
response = requests.post(GENERATION_API_URL, headers=headers, json=payload)
|
37 |
+
response.raise_for_status()
|
38 |
return response.content
|
39 |
except Exception as e:
|
40 |
+
st.error(f"Error: {e}")
|
41 |
return None
|
42 |
|
43 |
+
# Function to save feedback to a file
|
44 |
+
def save_feedback(name, feedback, rating):
|
45 |
+
with open("feedback.txt", "a") as f:
|
46 |
+
f.write(f"Name: {name}\nFeedback: {feedback}\nRating: {rating}/5\n\n")
|
47 |
+
|
48 |
# Streamlit app title
|
49 |
st.title("Image Insight & Generation Studio 👻")
|
50 |
|
|
|
52 |
uploaded_file = st.file_uploader("Upload an image...", type=["jpg", "jpeg", "png"])
|
53 |
|
54 |
if uploaded_file is not None:
|
|
|
|
|
|
|
55 |
# Read image bytes
|
56 |
image_bytes = uploaded_file.read()
|
57 |
|
58 |
+
# Display the uploaded image separately before generating the new image
|
59 |
+
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
|
60 |
+
|
61 |
# Text input for additional description for image generation
|
62 |
user_prompt = st.text_input("Enter additional description for image generation (optional):")
|
63 |
|
|
|
68 |
clothing = query_analysis(image_bytes, "What is the person wearing and which color?")
|
69 |
hair_color = query_analysis(image_bytes, "What is the hair color of the person?")
|
70 |
facial_expression = query_analysis(image_bytes, "What is the facial expression of the person?")
|
71 |
+
age = query_analysis(image_bytes, "What is the estimated age of the person?")
|
72 |
|
73 |
# Build generation prompt based on VQA responses and user input
|
74 |
if gender.lower() == "female":
|
75 |
+
prompt = f"Create a {age}-year-old girl with {hair_color} hair, wearing {clothing}, showing a {facial_expression}. {user_prompt}"
|
|
|
|
|
76 |
else:
|
77 |
+
prompt = f"Create a {age}-year-old person with {hair_color} hair, wearing {clothing}, showing a {facial_expression}. {user_prompt}"
|
78 |
+
|
79 |
# Call image generation API
|
80 |
with st.spinner("Generating the image..."):
|
81 |
generated_image_data = query_generation(prompt, image_bytes)
|
82 |
+
if generated_image_data:
|
83 |
+
# Store the generated image in session state
|
84 |
+
st.session_state.generated_image_data = generated_image_data
|
85 |
+
st.success("Image generated successfully!")
|
86 |
|
87 |
+
# Display the generated image if available
|
88 |
+
if 'generated_image_data' in st.session_state:
|
89 |
+
st.markdown("### Generated Image")
|
90 |
+
generated_image = Image.open(io.BytesIO(st.session_state.generated_image_data))
|
91 |
+
st.image(generated_image, caption="Generated Image", use_column_width=True)
|
92 |
|
93 |
+
# Provide download option for the generated image
|
94 |
+
buffered = io.BytesIO()
|
95 |
+
generated_image.save(buffered, format="PNG")
|
96 |
+
st.download_button(
|
97 |
+
label="Download Generated Image",
|
98 |
+
data=buffered.getvalue(),
|
99 |
+
file_name="generated_image.png",
|
100 |
+
mime="image/png"
|
101 |
+
)
|
102 |
+
|
103 |
+
# Ask for feedback after the image is generated
|
104 |
+
with st.form(key='feedback_form'):
|
105 |
+
name = st.text_input("Your Name")
|
106 |
+
feedback = st.text_area("Please leave your feedback")
|
107 |
+
rating = st.slider("Rate the image quality", 1, 5)
|
108 |
+
submit_button = st.form_submit_button(label='Submit Feedback')
|
109 |
+
|
110 |
+
if submit_button:
|
111 |
+
save_feedback(name, feedback, rating)
|
112 |
+
st.success("Thank you for your feedback!")
|
113 |
+
|
114 |
+
# Ensure that the generated image does not disappear after feedback or download
|
115 |
+
if 'generated_image_data' in st.session_state:
|
116 |
+
# st.markdown("### Generated Image (Persistent)")
|
117 |
+
# st.image(Image.open(io.BytesIO(st.session_state.generated_image_data)), caption="Generated Image", use_column_width=True)
|
118 |
+
pass
|
119 |
|
120 |
+
# Footer for a better UI experience
|
121 |
st.markdown("---")
|
122 |
st.markdown("❤️🔥 *Made by Sujal Tamrakar*")
|
123 |
+
st.markdown("💡 *Powered by Hugging Face and Streamlit*")
|