File size: 6,412 Bytes
02fde7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
422e946
 
 
02fde7e
f81df75
 
02fde7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
422e946
 
 
 
02fde7e
 
 
 
 
 
 
 
 
d0d47f8
02fde7e
422e946
 
02fde7e
 
 
 
 
 
 
 
 
 
 
 
 
422e946
 
 
 
 
e9cffd2
 
422e946
 
 
 
 
 
 
2a25ffe
422e946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02fde7e
 
422e946
f81df75
 
422e946
e9cffd2
 
422e946
 
 
 
f81df75
 
 
02fde7e
422e946
dc72b9d
f81df75
02fde7e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""

import evaluate
import datasets
import re
import dateutil.parser
import numpy as np

import time


# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""

# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to solve this great ML task and is crafted with a lot of care.
"""


# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of predictions to score. Each predictions
        should be a string with tokens separated by spaces.
    references: list of reference for each prediction. Each
        reference should be a string with tokens separated by spaces.
Returns:
    accuracy: description of the first score,
    another_score: description of the second score,
Examples:
    Examples should be written in doctest format, and should illustrate how
    to use the function.

    >>> my_new_module = evaluate.load("my_new_module")
    >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
    >>> print(results)
    {'accuracy': 1.0}
"""

# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class LogScoreMetric(evaluate.Metric):
    """TODO: Short description of my evaluation module."""

    # Constant regex to get timestrings
    timestamp_regex = r'(^\d{4}[-/.]\d{2}[-/.]\d{2}(?:[ T]\d{2}[:]\d{2}(?:[:]\d{2}(?:[.,]\d+)?)?(?:Z|[+-]\d{2}[:]\d{2})?)?)'
    sacrebleu = evaluate.load("sacrebleu")

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            # Both prediction and reference are strings
            features=datasets.Features({
                "predictions": datasets.Value("string", id="sequence"),
                "references": datasets.Value("string", id="sequence"),
            }),
            # Homepage of the module for documentation
            homepage="http://module.homepage",
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"]
        )

    def _download_and_prepare(self, dl_manager):
        """Optional: download external resources useful to compute the scores"""
        # TODO: Download external resources if needed
        pass

    def getLogMetric(self, pred : str, ref : str):
        ref = ref.strip(' \t\n\r')
        pred = pred.strip(' \t\n\r')
        
        # Find all timestrings in the log
        pred_timestrings = re.findall(self.timestamp_regex, pred, re.MULTILINE)
        ref_timestrings = re.findall(self.timestamp_regex, ref, re.MULTILINE)

        #Check if there is the correct amount of timestrings in the prediction
        if(len(pred_timestrings) != len(ref_timestrings)):
            return 0.0
        
        # replace all digits in the reference timestamp (first timestamp) with '/d' to get
        # a regex that describes the format  
        pred_timestring_pattern = re.sub(r'\d', r'\\d', re.escape(pred_timestrings[0])) if (len(pred_timestrings) > 0) else ""
        
        # A variable to save the previous timestamp (as datetime obj) to check monotonicity
        prev_datetime = None
        # Convert matches to datetime objects
        for ts in pred_timestrings:
            try:
                # Check if the format matches with the format of the first timestamp
                matchesPattern = re.fullmatch(pred_timestring_pattern, ts) is not None
                # Check if the timestamps are monotonically increasing
                cur_datetime = dateutil.parser.parse(ts)
                monotonicallyIncreasing = True if prev_datetime == None else prev_datetime <= cur_datetime
                prev_datetime = cur_datetime

                if not (matchesPattern and monotonicallyIncreasing):
                    # timestamps not consistent
                    return 0.0

            except Exception as e:
                # e.g. date format not parsable by dateutil.parser
                return 0.0

        # Correct amt of timestrings, monotonically increasing, consistent + (by dateutil.parser) parsable format
        return 1.0

    def _compute(self, predictions, references):
        """Returns the scores"""

        t_before = time.perf_counter()

        timestamp_score = np.mean([self.getLogMetric(p,r) for p,r in zip(predictions,references)])
        predictions_without_timestamps = [re.sub(self.timestamp_regex, '', p, flags=re.MULTILINE) for p in predictions]
        references_without_timestamps = [re.sub(self.timestamp_regex, '', r, flags=re.MULTILINE) for r in references]

        # Sacrebleu score on logs without timestamps
        sb_results = self.sacrebleu.compute(predictions=predictions_without_timestamps, references=references_without_timestamps)

        t_after = time.perf_counter()
        compute_duration = f" {t_after - t_before:0.4f}"

        return {
            "timestamp_score": timestamp_score,
            "sacrebleu_score": sb_results["score"],
            "compute_duration":compute_duration
        }