Spaces:
Running
Running
Daniel Gil-U Fuhge
commited on
Commit
·
d9c6096
1
Parent(s):
076948a
add dataset helper
Browse files- dataset_helper.py +326 -0
dataset_helper.py
ADDED
|
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
from typing import Tuple, Any
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
# SEQUENCE GENERATION
|
| 9 |
+
PADDING_VALUE = float('-100')
|
| 10 |
+
|
| 11 |
+
# ANIMATION_PARAMETER_INDICES = {
|
| 12 |
+
# 0: [], # EOS
|
| 13 |
+
# 1: [10, 11, 12, 13], # translate: begin, dur, x, y
|
| 14 |
+
# 2: [10, 11, 14, 15], # curve: begin, dur, via_x, via_y
|
| 15 |
+
# 3: [10, 11, 16], # scale: begin, dur, from_factor
|
| 16 |
+
# 4: [10, 11, 17], # rotate: begin, dur, from_degree
|
| 17 |
+
# 5: [10, 11, 18], # skewX: begin, dur, from_x
|
| 18 |
+
# 6: [10, 11, 19], # skewY: begin, dur, from_y
|
| 19 |
+
# 7: [10, 11, 20, 21, 22], # fill: begin, dur, from_r, from_g, from_b
|
| 20 |
+
# 8: [10, 11, 23], # opcaity: begin, dur, from_f
|
| 21 |
+
# 9: [10, 11, 24], # blur: begin, dur, from_f
|
| 22 |
+
# }
|
| 23 |
+
|
| 24 |
+
ANIMATION_PARAMETER_INDICES = {
|
| 25 |
+
0: [], # EOS
|
| 26 |
+
1: [0, 1, 2, 3], # translate: begin, dur, x, y
|
| 27 |
+
2: [0, 1, 4, 5], # curve: begin, dur, via_x, via_y
|
| 28 |
+
3: [0, 1, 6], # scale: begin, dur, from_factor
|
| 29 |
+
4: [0, 1, 7], # rotate: begin, dur, from_degree
|
| 30 |
+
5: [0, 1, 8], # skewX: begin, dur, from_x
|
| 31 |
+
6: [0, 1, 9], # skewY: begin, dur, from_y
|
| 32 |
+
7: [0, 1, 10, 11, 12], # fill: begin, dur, from_r, from_g, from_b
|
| 33 |
+
8: [0, 1, 13], # opcaity: begin, dur, from_f
|
| 34 |
+
9: [0, 1, 14], # blur: begin, dur, from_f
|
| 35 |
+
}
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def unpack_embedding(embedding: torch.Tensor, dim=0, device="cpu") -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 39 |
+
"""
|
| 40 |
+
Args:
|
| 41 |
+
device: cpu / gpu
|
| 42 |
+
dim: dimension where the embedding is positioned
|
| 43 |
+
embedding: embedding of dimension 270
|
| 44 |
+
|
| 45 |
+
Returns: tuple of tensors: deep-svg embedding, type of prediction, animation parameters
|
| 46 |
+
|
| 47 |
+
"""
|
| 48 |
+
if embedding.shape[dim] != 282:
|
| 49 |
+
print(embedding.shape)
|
| 50 |
+
raise ValueError('Dimension of 270 required.')
|
| 51 |
+
|
| 52 |
+
if dim == 0:
|
| 53 |
+
deep_svg = embedding[: -26].to(device)
|
| 54 |
+
types = embedding[-26: -15].to(device)
|
| 55 |
+
parameters = embedding[-15:].to(device)
|
| 56 |
+
|
| 57 |
+
elif dim == 1:
|
| 58 |
+
deep_svg = embedding[:, : -26].to(device)
|
| 59 |
+
types = embedding[:, -26: -15].to(device)
|
| 60 |
+
parameters = embedding[:, -15:].to(device)
|
| 61 |
+
|
| 62 |
+
elif dim == 2:
|
| 63 |
+
deep_svg = embedding[:, :, : -26].to(device)
|
| 64 |
+
types = embedding[:, :, -26: -15].to(device)
|
| 65 |
+
parameters = embedding[:, :, -15:].to(device)
|
| 66 |
+
|
| 67 |
+
else:
|
| 68 |
+
raise ValueError('Dimension > 2 not possible.')
|
| 69 |
+
return deep_svg, types, parameters
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def generate_dataset(dataframe_index: pd.DataFrame,
|
| 73 |
+
input_sequences_dict_used: dict,
|
| 74 |
+
input_sequences_dict_unused: dict,
|
| 75 |
+
output_sequences: pd.DataFrame,
|
| 76 |
+
logos_list: dict,
|
| 77 |
+
sequence_length_input: int,
|
| 78 |
+
sequence_length_output: int,
|
| 79 |
+
) -> dict:
|
| 80 |
+
"""
|
| 81 |
+
Builds the dataset and returns it
|
| 82 |
+
|
| 83 |
+
Args:
|
| 84 |
+
input_sequences_dict_used: dictionary containing input sequences per logo
|
| 85 |
+
input_sequences_dict_unused: dictionary containing all unused paths
|
| 86 |
+
dataframe_index: dataframe containing the relevant indexes for the dataframes
|
| 87 |
+
output_sequences: dataframe containing animations
|
| 88 |
+
logos_list: dictionary in train/test split containing list for logo ids
|
| 89 |
+
sequence_length_input: length of input sequence for padding
|
| 90 |
+
sequence_length_output: length of output sequence for padding
|
| 91 |
+
|
| 92 |
+
Returns: dictionary containing the dataset for training/testing
|
| 93 |
+
|
| 94 |
+
"""
|
| 95 |
+
dataset = {
|
| 96 |
+
"is_bucketing": False,
|
| 97 |
+
"train": {
|
| 98 |
+
"input": [],
|
| 99 |
+
"output": []
|
| 100 |
+
},
|
| 101 |
+
"test": {
|
| 102 |
+
"input": [],
|
| 103 |
+
"output": []
|
| 104 |
+
}
|
| 105 |
+
}
|
| 106 |
+
for i, logo_info in dataframe_index.iterrows():
|
| 107 |
+
logo = logo_info['filename'] # e.g. logo_1
|
| 108 |
+
file = logo_info['file'] # e.g. logo_1_animation_2
|
| 109 |
+
oversample = logo_info['repeat']
|
| 110 |
+
print(f"Processing {logo} with {file}: ")
|
| 111 |
+
|
| 112 |
+
if input_sequences_dict_used.keys().__contains__(logo) and input_sequences_dict_unused.keys().__contains__(logo):
|
| 113 |
+
for j in range(oversample):
|
| 114 |
+
input_tensor = _generate_input_sequence(
|
| 115 |
+
input_sequences_dict_used[logo].copy(),
|
| 116 |
+
input_sequences_dict_unused[logo].copy(),
|
| 117 |
+
#pd.DataFrame(),
|
| 118 |
+
null_features=26, # TODO depends on architecture later
|
| 119 |
+
sequence_length=sequence_length_input,
|
| 120 |
+
# is_randomized=True, always now
|
| 121 |
+
is_padding=True
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
output_tensor = _generate_output_sequence(
|
| 125 |
+
output_sequences[(output_sequences['filename'] == logo) & (output_sequences['file'] == file)].copy(),
|
| 126 |
+
sequence_length=sequence_length_output,
|
| 127 |
+
is_randomized=False,
|
| 128 |
+
is_padding=True
|
| 129 |
+
)
|
| 130 |
+
# append to lists
|
| 131 |
+
if logo in logos_list["train"]:
|
| 132 |
+
random_index = random.randint(0, len(dataset["train"]["input"]))
|
| 133 |
+
dataset["train"]["input"].insert(random_index, input_tensor)
|
| 134 |
+
dataset["train"]["output"].insert(random_index, output_tensor)
|
| 135 |
+
|
| 136 |
+
elif logo in logos_list["test"]:
|
| 137 |
+
dataset["test"]["input"].append(input_tensor)
|
| 138 |
+
dataset["test"]["output"].append(output_tensor)
|
| 139 |
+
break # no oversampling in testing
|
| 140 |
+
|
| 141 |
+
else:
|
| 142 |
+
print(f"Some problem with {logo}. Neither in train or test set list.")
|
| 143 |
+
break
|
| 144 |
+
|
| 145 |
+
dataset["train"]["input"] = torch.stack(dataset["train"]["input"])
|
| 146 |
+
dataset["train"]["output"] = torch.stack(dataset["train"]["output"])
|
| 147 |
+
dataset["test"]["input"] = torch.stack(dataset["test"]["input"])
|
| 148 |
+
dataset["test"]["output"] = torch.stack(dataset["test"]["output"])
|
| 149 |
+
|
| 150 |
+
return dataset
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
def _generate_input_sequence(logo_embeddings_used: pd.DataFrame,
|
| 154 |
+
logo_embeddings_unused: pd.DataFrame,
|
| 155 |
+
null_features: int,
|
| 156 |
+
sequence_length: int,
|
| 157 |
+
is_padding: bool) -> torch.Tensor:
|
| 158 |
+
"""
|
| 159 |
+
Build a torch tensor for the transformer input sequences.
|
| 160 |
+
Includes
|
| 161 |
+
- Ensuring all used embeddings are included
|
| 162 |
+
- Filling the remainder with unused embeddings up to sequence length
|
| 163 |
+
- Generation of padding
|
| 164 |
+
|
| 165 |
+
Args:
|
| 166 |
+
logo_embeddings (pd.DataFrame): DataFrame containing logo embeddings.
|
| 167 |
+
null_features (int): Number of null features to add to each embedding.
|
| 168 |
+
sequence_length (int): Target length for padding sequences.
|
| 169 |
+
is_padding: if true, function adds padding
|
| 170 |
+
|
| 171 |
+
Returns:
|
| 172 |
+
torch.Tensor: Tensor representing the input sequences.
|
| 173 |
+
"""
|
| 174 |
+
logo_embeddings_used.drop(columns=['filename', 'animation_id'], inplace=True)
|
| 175 |
+
logo_embeddings_unused.drop(columns=['filename', 'animation_id'], inplace=True)
|
| 176 |
+
|
| 177 |
+
# Combine used and unused. Fill used with random unused samples
|
| 178 |
+
logo_embeddings = logo_embeddings_unused
|
| 179 |
+
remaining_slots = sequence_length - len(logo_embeddings)
|
| 180 |
+
if remaining_slots > 0:
|
| 181 |
+
sample_size = min(len(logo_embeddings_unused), remaining_slots)
|
| 182 |
+
additional_embeddings = logo_embeddings_unused.sample(n=sample_size, replace=False)
|
| 183 |
+
logo_embeddings = pd.concat([logo_embeddings, additional_embeddings], ignore_index=True)
|
| 184 |
+
logo_embeddings.reset_index()
|
| 185 |
+
|
| 186 |
+
# Randomization
|
| 187 |
+
logo_embeddings = logo_embeddings.sample(frac=1).reset_index(drop=True)
|
| 188 |
+
|
| 189 |
+
# Null Features
|
| 190 |
+
if null_features > 0:
|
| 191 |
+
logo_embeddings = pd.concat([logo_embeddings,
|
| 192 |
+
pd.DataFrame(0,
|
| 193 |
+
index=logo_embeddings.index,
|
| 194 |
+
columns=range(logo_embeddings.shape[1],
|
| 195 |
+
logo_embeddings.shape[1] + null_features))],
|
| 196 |
+
axis=1,
|
| 197 |
+
ignore_index=True)
|
| 198 |
+
|
| 199 |
+
if is_padding:
|
| 200 |
+
logo_embeddings = _add_padding(logo_embeddings, sequence_length)
|
| 201 |
+
|
| 202 |
+
return torch.tensor(logo_embeddings.values)
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
def _generate_output_sequence(animation: pd.DataFrame,
|
| 206 |
+
sequence_length: int,
|
| 207 |
+
is_randomized: bool,
|
| 208 |
+
is_padding: bool) -> torch.Tensor:
|
| 209 |
+
"""
|
| 210 |
+
Build a torch tensor for the transformer output sequences.
|
| 211 |
+
Includes
|
| 212 |
+
- Randomization (later, when same start time)
|
| 213 |
+
- Generation of padding
|
| 214 |
+
- Add EOS Token
|
| 215 |
+
|
| 216 |
+
Args:
|
| 217 |
+
animation (pd.DataFrame): DataFrame containing logo embeddings.
|
| 218 |
+
sequence_length (int): Target length for padding sequences.
|
| 219 |
+
is_randomized: shuffle order of paths, applies when same start time
|
| 220 |
+
is_padding: if true, function adds padding
|
| 221 |
+
|
| 222 |
+
Returns:
|
| 223 |
+
torch.Tensor: Tensor representing the input sequences.
|
| 224 |
+
"""
|
| 225 |
+
if is_randomized:
|
| 226 |
+
animation = animation.sample(frac=1).reset_index(drop=True)
|
| 227 |
+
print("Note: Randomization not implemented yet")
|
| 228 |
+
|
| 229 |
+
animation.sort_values(by=['a10'], inplace=True) # again ordered by time start.
|
| 230 |
+
animation.drop(columns=['file', 'filename', "Unnamed: 0", "id"], inplace=True)
|
| 231 |
+
|
| 232 |
+
# Append the EOS row to the DataFrame
|
| 233 |
+
sos_eos_row = {col: 0 for col in animation.columns}
|
| 234 |
+
sos_eos_row["a0"] = 1
|
| 235 |
+
sos_eos_row = pd.DataFrame([sos_eos_row])
|
| 236 |
+
animation = pd.concat([sos_eos_row, animation, sos_eos_row],
|
| 237 |
+
ignore_index=True)
|
| 238 |
+
|
| 239 |
+
# Padding Generation: Add padding rows or cut off excess rows
|
| 240 |
+
if is_padding:
|
| 241 |
+
animation = _add_padding(animation, sequence_length)
|
| 242 |
+
|
| 243 |
+
return torch.Tensor(animation.values)
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
def _add_padding(dataframe: pd.DataFrame, sequence_length: int) -> pd.DataFrame:
|
| 247 |
+
"""
|
| 248 |
+
Add padding to a dataframe
|
| 249 |
+
|
| 250 |
+
Args:
|
| 251 |
+
dataframe: dataframe to add padding to
|
| 252 |
+
sequence_length: length of final sequences
|
| 253 |
+
|
| 254 |
+
Returns:
|
| 255 |
+
|
| 256 |
+
"""
|
| 257 |
+
if len(dataframe) < sequence_length:
|
| 258 |
+
padding_rows = pd.DataFrame([[PADDING_VALUE] * len(dataframe.columns)] * (sequence_length - len(dataframe)),
|
| 259 |
+
columns=dataframe.columns)
|
| 260 |
+
dataframe = pd.concat([dataframe, padding_rows], ignore_index=True)
|
| 261 |
+
elif len(dataframe) > sequence_length:
|
| 262 |
+
# Cut off excess rows
|
| 263 |
+
dataframe = dataframe.iloc[:sequence_length]
|
| 264 |
+
|
| 265 |
+
return dataframe
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
# BUCKETING
|
| 269 |
+
def generate_buckets_2D(dataset, column1, column2, quantiles1, quantiles2, print_histogram=True):
|
| 270 |
+
"""
|
| 271 |
+
|
| 272 |
+
Args:
|
| 273 |
+
dataset: dataset to generate buckets for
|
| 274 |
+
column1: first column name
|
| 275 |
+
column2: second column name
|
| 276 |
+
quantiles1: initial quantiles for column1
|
| 277 |
+
quantiles2: initial quantiles for column2
|
| 278 |
+
print_histogram: if true, a histogram of the 2D buckets is printed
|
| 279 |
+
|
| 280 |
+
Returns: dictionary object with bucket edges
|
| 281 |
+
|
| 282 |
+
"""
|
| 283 |
+
x_edges = dataset[column1].quantile(quantiles1)
|
| 284 |
+
y_edges = dataset[column2].quantile(quantiles2)
|
| 285 |
+
|
| 286 |
+
x_edges = np.array(x_edges)
|
| 287 |
+
y_edges = np.unique(y_edges)
|
| 288 |
+
|
| 289 |
+
if print_histogram:
|
| 290 |
+
hist, x_edges, y_edges = np.histogram2d(dataset[column1],
|
| 291 |
+
dataset[column2],
|
| 292 |
+
bins=[x_edges, y_edges])
|
| 293 |
+
print(hist)
|
| 294 |
+
|
| 295 |
+
return {
|
| 296 |
+
"input_edges": list(x_edges),
|
| 297 |
+
"output_edges": list(y_edges)
|
| 298 |
+
}
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
def get_bucket(input_length, output_length, buckets):
|
| 302 |
+
bucket_name = ""
|
| 303 |
+
|
| 304 |
+
for i, input_edge in enumerate(buckets["input_edges"]):
|
| 305 |
+
# print(f"{i}: {input_length} < {input_edge}")
|
| 306 |
+
if input_length > input_edge:
|
| 307 |
+
continue
|
| 308 |
+
|
| 309 |
+
bucket_name = bucket_name + str(int(i)) # chr(ord('A')+i)
|
| 310 |
+
break
|
| 311 |
+
|
| 312 |
+
bucket_name = bucket_name + "-"
|
| 313 |
+
|
| 314 |
+
for i, output_edge in enumerate(buckets["output_edges"]):
|
| 315 |
+
if output_length > output_edge:
|
| 316 |
+
continue
|
| 317 |
+
|
| 318 |
+
bucket_name = bucket_name + str(int(i))
|
| 319 |
+
break
|
| 320 |
+
|
| 321 |
+
return bucket_name
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
def warn_if_contains_NaN(dataset: torch.Tensor):
|
| 325 |
+
if torch.isnan(dataset).any():
|
| 326 |
+
print("There are NaN values in the dataset")
|