svjack commited on
Commit
da4df12
·
1 Parent(s): 0cdb20e

Upload with huggingface_hub

Browse files
Files changed (4) hide show
  1. __pycache__/predict.cpython-39.pyc +0 -0
  2. app.py +58 -0
  3. predict.py +47 -0
  4. requirements.txt +2 -0
__pycache__/predict.cpython-39.pyc ADDED
Binary file (1.52 kB). View file
 
app.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ from predict import *
4
+
5
+ from transformers import T5ForConditionalGeneration
6
+ from transformers import T5TokenizerFast as T5Tokenizer
7
+ import pandas as pd
8
+ model = "svjack/comet-atomic-zh"
9
+ device = "cpu"
10
+ #device = "cuda:0"
11
+ tokenizer = T5Tokenizer.from_pretrained(model)
12
+ model = T5ForConditionalGeneration.from_pretrained(model).to(device).eval()
13
+
14
+ NEED_PREFIX = '以下事件有哪些必要的先决条件:'
15
+ EFFECT_PREFIX = '下面的事件发生后可能会发生什么:'
16
+ INTENT_PREFIX = '以下事件的动机是什么:'
17
+ REACT_PREFIX = '以下事件发生后,你有什么感觉:'
18
+
19
+ obj = Obj(model, tokenizer, device)
20
+
21
+ text0 = "X吃到了一顿大餐。"
22
+ text1 = "X和Y一起搭了个积木。"
23
+
24
+ example_sample = [
25
+ [text0, False],
26
+ [text1, False],
27
+ ]
28
+
29
+ def demo_func(event, do_sample):
30
+ #event = "X吃到了一顿大餐。"
31
+ times = 1
32
+ df = pd.DataFrame(
33
+ pd.Series(
34
+ [NEED_PREFIX, EFFECT_PREFIX, INTENT_PREFIX, REACT_PREFIX]
35
+ ).map(
36
+ lambda x: (x, [obj.predict(
37
+ "{}{}".format(x, event), do_sample = do_sample
38
+ )[0] for _ in range(times)][0])
39
+ ).values.tolist()
40
+ )
41
+ df.columns = ["PREFIX", "PRED"]
42
+ l = df.apply(lambda x: x.to_dict(), axis = 1).values.tolist()
43
+ return {
44
+ "Output": l
45
+ }
46
+
47
+ demo = gr.Interface(
48
+ fn=demo_func,
49
+ inputs=[gr.Text(label = "Event"),
50
+ gr.Checkbox(label="do sample"),
51
+ ],
52
+ outputs="json",
53
+ title=f"Chinese Comet Atomic 🐰 demonstration",
54
+ examples=example_sample if example_sample else None,
55
+ cache_examples = False
56
+ )
57
+
58
+ demo.launch(server_name=None, server_port=None)
predict.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class Obj:
2
+ def __init__(self, model, tokenizer, device = "cpu"):
3
+ self.model = model
4
+ self.tokenizer = tokenizer
5
+ self.device = device
6
+ self.model = self.model.to(self.device)
7
+
8
+ def predict(
9
+ self,
10
+ source_text: str,
11
+ max_length: int = 512,
12
+ num_return_sequences: int = 1,
13
+ num_beams: int = 2,
14
+ top_k: int = 50,
15
+ top_p: float = 0.95,
16
+ do_sample: bool = True,
17
+ repetition_penalty: float = 2.5,
18
+ length_penalty: float = 1.0,
19
+ early_stopping: bool = True,
20
+ skip_special_tokens: bool = True,
21
+ clean_up_tokenization_spaces: bool = True,
22
+ ):
23
+ input_ids = self.tokenizer.encode(
24
+ source_text, return_tensors="pt", add_special_tokens=True
25
+ )
26
+ input_ids = input_ids.to(self.device)
27
+ generated_ids = self.model.generate(
28
+ input_ids=input_ids,
29
+ num_beams=num_beams,
30
+ max_length=max_length,
31
+ repetition_penalty=repetition_penalty,
32
+ length_penalty=length_penalty,
33
+ early_stopping=early_stopping,
34
+ top_p=top_p,
35
+ top_k=top_k,
36
+ num_return_sequences=num_return_sequences,
37
+ do_sample = do_sample
38
+ )
39
+ preds = [
40
+ self.tokenizer.decode(
41
+ g,
42
+ skip_special_tokens=skip_special_tokens,
43
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
44
+ )
45
+ for g in generated_ids
46
+ ]
47
+ return preds
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ torch
2
+ transformers