Spaces:
Sleeping
Sleeping
Upload with huggingface_hub
Browse files
app.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from diffusers import utils
|
| 2 |
+
from diffusers.utils import deprecation_utils
|
| 3 |
+
from diffusers.models import cross_attention
|
| 4 |
+
utils.deprecate = lambda *arg, **kwargs: None
|
| 5 |
+
deprecation_utils.deprecate = lambda *arg, **kwargs: None
|
| 6 |
+
cross_attention.deprecate = lambda *arg, **kwargs: None
|
| 7 |
+
|
| 8 |
+
import os
|
| 9 |
+
import sys
|
| 10 |
+
'''
|
| 11 |
+
MAIN_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
|
| 12 |
+
sys.path.insert(0, MAIN_DIR)
|
| 13 |
+
os.chdir(MAIN_DIR)
|
| 14 |
+
'''
|
| 15 |
+
|
| 16 |
+
import gradio as gr
|
| 17 |
+
import numpy as np
|
| 18 |
+
import torch
|
| 19 |
+
import random
|
| 20 |
+
|
| 21 |
+
from annotator.util import resize_image, HWC3
|
| 22 |
+
from annotator.canny import CannyDetector
|
| 23 |
+
from diffusers.models.unet_2d_condition import UNet2DConditionModel
|
| 24 |
+
from diffusers.pipelines import DiffusionPipeline
|
| 25 |
+
from diffusers.schedulers import DPMSolverMultistepScheduler
|
| 26 |
+
from models import ControlLoRA, ControlLoRACrossAttnProcessor
|
| 27 |
+
|
| 28 |
+
apply_canny = CannyDetector()
|
| 29 |
+
|
| 30 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 31 |
+
|
| 32 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
| 33 |
+
'IDEA-CCNL/Taiyi-Stable-Diffusion-1B-Chinese-v0.1', safety_checker=None
|
| 34 |
+
)
|
| 35 |
+
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
|
| 36 |
+
pipeline = pipeline.to(device)
|
| 37 |
+
unet: UNet2DConditionModel = pipeline.unet
|
| 38 |
+
|
| 39 |
+
#ckpt_path = "ckpts/sd-diffusiondb-canny-model-control-lora-zh"
|
| 40 |
+
ckpt_path = "svjack/canny-control-lora-zh"
|
| 41 |
+
control_lora = ControlLoRA.from_pretrained(ckpt_path)
|
| 42 |
+
control_lora = control_lora.to(device)
|
| 43 |
+
|
| 44 |
+
# load control lora attention processors
|
| 45 |
+
lora_attn_procs = {}
|
| 46 |
+
lora_layers_list = list([list(layer_list) for layer_list in control_lora.lora_layers])
|
| 47 |
+
n_ch = len(unet.config.block_out_channels)
|
| 48 |
+
control_ids = [i for i in range(n_ch)]
|
| 49 |
+
for name in pipeline.unet.attn_processors.keys():
|
| 50 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
| 51 |
+
if name.startswith("mid_block"):
|
| 52 |
+
control_id = control_ids[-1]
|
| 53 |
+
elif name.startswith("up_blocks"):
|
| 54 |
+
block_id = int(name[len("up_blocks.")])
|
| 55 |
+
control_id = list(reversed(control_ids))[block_id]
|
| 56 |
+
elif name.startswith("down_blocks"):
|
| 57 |
+
block_id = int(name[len("down_blocks.")])
|
| 58 |
+
control_id = control_ids[block_id]
|
| 59 |
+
|
| 60 |
+
lora_layers = lora_layers_list[control_id]
|
| 61 |
+
if len(lora_layers) != 0:
|
| 62 |
+
lora_layer: ControlLoRACrossAttnProcessor = lora_layers.pop(0)
|
| 63 |
+
lora_attn_procs[name] = lora_layer
|
| 64 |
+
|
| 65 |
+
unet.set_attn_processor(lora_attn_procs)
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, sample_steps, scale, seed, eta, low_threshold, high_threshold):
|
| 69 |
+
with torch.no_grad():
|
| 70 |
+
img = resize_image(HWC3(input_image), image_resolution)
|
| 71 |
+
H, W, C = img.shape
|
| 72 |
+
|
| 73 |
+
detected_map = apply_canny(img, low_threshold, high_threshold)
|
| 74 |
+
detected_map = HWC3(detected_map)
|
| 75 |
+
|
| 76 |
+
control = torch.from_numpy(detected_map[...,::-1].copy().transpose([2,0,1])).float().to(device)[None] / 127.5 - 1
|
| 77 |
+
_ = control_lora(control).control_states
|
| 78 |
+
|
| 79 |
+
if seed == -1:
|
| 80 |
+
seed = random.randint(0, 65535)
|
| 81 |
+
|
| 82 |
+
# run inference
|
| 83 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
| 84 |
+
images = []
|
| 85 |
+
for i in range(num_samples):
|
| 86 |
+
_ = control_lora(control).control_states
|
| 87 |
+
image = pipeline(
|
| 88 |
+
prompt + ', ' + a_prompt, negative_prompt=n_prompt,
|
| 89 |
+
num_inference_steps=sample_steps, guidance_scale=scale, eta=eta,
|
| 90 |
+
generator=generator, height=H, width=W).images[0]
|
| 91 |
+
images.append(np.asarray(image))
|
| 92 |
+
|
| 93 |
+
results = images
|
| 94 |
+
return [255 - detected_map] + results
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
block = gr.Blocks().queue()
|
| 98 |
+
with block:
|
| 99 |
+
with gr.Row():
|
| 100 |
+
gr.Markdown("## Control Stable Diffusion with Canny Edge Maps")
|
| 101 |
+
with gr.Row():
|
| 102 |
+
with gr.Column():
|
| 103 |
+
input_image = gr.Image(source='upload', type="numpy")
|
| 104 |
+
prompt = gr.Textbox(label="Prompt")
|
| 105 |
+
run_button = gr.Button(label="Run")
|
| 106 |
+
with gr.Accordion("Advanced options", open=False):
|
| 107 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
| 108 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=256)
|
| 109 |
+
low_threshold = gr.Slider(label="Canny low threshold", minimum=1, maximum=255, value=100, step=1)
|
| 110 |
+
high_threshold = gr.Slider(label="Canny high threshold", minimum=1, maximum=255, value=200, step=1)
|
| 111 |
+
sample_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
| 112 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
| 113 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
| 114 |
+
eta = gr.Number(label="eta", value=0.0)
|
| 115 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='详细的模拟混合媒体拼贴画,帆布质地的当代艺术风格,朋克艺术,逼真主义,感性的身体,表现主义,极简主���。杰作,完美的组成,逼真的美丽的脸')
|
| 116 |
+
n_prompt = gr.Textbox(label="Negative Prompt",
|
| 117 |
+
value='低质量,模糊,混乱')
|
| 118 |
+
with gr.Column():
|
| 119 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
|
| 120 |
+
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, sample_steps, scale, seed, eta, low_threshold, high_threshold]
|
| 121 |
+
run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
block.launch(server_name='0.0.0.0')
|
| 125 |
+
|
| 126 |
+
#### block.launch(server_name='172.16.202.228', share=True)
|