|
import os |
|
import re |
|
import time |
|
from io import BytesIO |
|
import uuid |
|
from dataclasses import dataclass |
|
from glob import iglob |
|
import argparse |
|
from einops import rearrange |
|
from fire import Fire |
|
from PIL import ExifTags, Image |
|
import spaces |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import gradio as gr |
|
import numpy as np |
|
from transformers import pipeline |
|
|
|
from flux.sampling import denoise, get_schedule, prepare, unpack |
|
from flux.util import (configs, embed_watermark, load_ae, load_clip, load_flow_model, load_t5) |
|
from huggingface_hub import login |
|
login(token=os.getenv('Token')) |
|
|
|
import torch |
|
|
|
|
|
@dataclass |
|
class SamplingOptions: |
|
source_prompt: str |
|
target_prompt: str |
|
|
|
width: int |
|
height: int |
|
num_steps: int |
|
guidance: float |
|
seed: int | None |
|
|
|
@torch.inference_mode() |
|
def encode(init_image, torch_device): |
|
init_image = torch.from_numpy(init_image).permute(2, 0, 1).float() / 127.5 - 1 |
|
init_image = init_image.unsqueeze(0) |
|
init_image = init_image.to(torch_device) |
|
with torch.no_grad(): |
|
init_image = ae.encode(init_image.to()).to(torch.bfloat16) |
|
return init_image |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
name = 'flux-dev' |
|
ae = load_ae(name, device) |
|
t5 = load_t5(device, max_length=256 if name == "flux-schnell" else 512) |
|
clip = load_clip(device) |
|
model = load_flow_model(name, device=device) |
|
offload = False |
|
name = "flux-dev" |
|
is_schnell = False |
|
feature_path = 'feature' |
|
output_dir = 'result' |
|
add_sampling_metadata = True |
|
|
|
@spaces.GPU(duration=120) |
|
@torch.inference_mode() |
|
def edit(init_image, source_prompt, target_prompt, num_steps, inject_step, guidance, seed): |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
torch.cuda.empty_cache() |
|
seed = None |
|
|
|
shape = init_image.shape |
|
|
|
new_h = shape[0] if shape[0] % 16 == 0 else shape[0] - shape[0] % 16 |
|
new_w = shape[1] if shape[1] % 16 == 0 else shape[1] - shape[1] % 16 |
|
|
|
init_image = init_image[:new_h, :new_w, :] |
|
|
|
width, height = init_image.shape[0], init_image.shape[1] |
|
|
|
|
|
init_image = torch.from_numpy(init_image).permute(2, 0, 1).float() / 127.5 - 1 |
|
init_image = init_image.unsqueeze(0) |
|
init_image = init_image.to(device) |
|
with torch.no_grad(): |
|
init_image = ae.encode(init_image.to()).to(torch.bfloat16) |
|
|
|
print(init_image.shape) |
|
|
|
rng = torch.Generator(device="cpu") |
|
opts = SamplingOptions( |
|
source_prompt=source_prompt, |
|
target_prompt=target_prompt, |
|
width=width, |
|
height=height, |
|
num_steps=num_steps, |
|
guidance=guidance, |
|
seed=seed, |
|
) |
|
if opts.seed is None: |
|
opts.seed = torch.Generator(device="cpu").seed() |
|
|
|
print(f"Generating with seed {opts.seed}:\n{opts.source_prompt}") |
|
t0 = time.perf_counter() |
|
|
|
opts.seed = None |
|
|
|
|
|
info = {} |
|
info['feature'] = {} |
|
info['inject_step'] = inject_step |
|
|
|
with torch.no_grad(): |
|
inp = prepare(t5, clip, init_image, prompt=opts.source_prompt) |
|
inp_target = prepare(t5, clip, init_image, prompt=opts.target_prompt) |
|
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell")) |
|
|
|
|
|
with torch.no_grad(): |
|
z, info = denoise(model, **inp, timesteps=timesteps, guidance=1, inverse=True, info=info) |
|
|
|
inp_target["img"] = z |
|
|
|
timesteps = get_schedule(opts.num_steps, inp_target["img"].shape[1], shift=(name != "flux-schnell")) |
|
|
|
|
|
x, _ = denoise(model, **inp_target, timesteps=timesteps, guidance=guidance, inverse=False, info=info) |
|
|
|
|
|
x = unpack(x.float(), opts.width, opts.height) |
|
|
|
output_name = os.path.join(output_dir, "img_{idx}.jpg") |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
idx = 0 |
|
else: |
|
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)] |
|
if len(fns) > 0: |
|
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1 |
|
else: |
|
idx = 0 |
|
|
|
device = torch.device("cuda") |
|
with torch.autocast(device_type=device.type, dtype=torch.bfloat16): |
|
x = ae.decode(x) |
|
|
|
if torch.cuda.is_available(): |
|
torch.cuda.synchronize() |
|
t1 = time.perf_counter() |
|
|
|
fn = output_name.format(idx=idx) |
|
print(f"Done in {t1 - t0:.1f}s. Saving {fn}") |
|
|
|
x = x.clamp(-1, 1) |
|
x = embed_watermark(x.float()) |
|
x = rearrange(x[0], "c h w -> h w c") |
|
|
|
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy()) |
|
exif_data = Image.Exif() |
|
exif_data[ExifTags.Base.Software] = "AI generated;txt2img;flux" |
|
exif_data[ExifTags.Base.Make] = "Black Forest Labs" |
|
exif_data[ExifTags.Base.Model] = name |
|
if add_sampling_metadata: |
|
exif_data[ExifTags.Base.ImageDescription] = source_prompt |
|
img.save(fn, exif=exif_data, quality=95, subsampling=0) |
|
|
|
print("End Edit") |
|
return img |
|
|
|
|
|
|
|
def create_demo(model_name: str, device: str = "cuda:0" if torch.cuda.is_available() else "cpu", offload: bool = False): |
|
is_schnell = model_name == "flux-schnell" |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(f"# RF-Edit Demo (FLUX for image editing)") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
|
|
|
|
source_prompt = gr.Text( |
|
label="Source Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your source prompt", |
|
container=False, |
|
value="" |
|
) |
|
target_prompt = gr.Text( |
|
label="Target Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your target prompt", |
|
container=False, |
|
value="" |
|
) |
|
init_image = gr.Image(label="Input Image", visible=True) |
|
|
|
|
|
generate_btn = gr.Button("Generate") |
|
|
|
with gr.Column(): |
|
with gr.Accordion("Advanced Options", open=True): |
|
num_steps = gr.Slider(1, 30, 25, step=1, label="Number of steps") |
|
inject_step = gr.Slider(1, 15, 3, step=1, label="Number of inject steps") |
|
guidance = gr.Slider(1.0, 10.0, 2, step=0.1, label="Guidance", interactive=not is_schnell) |
|
|
|
|
|
|
|
output_image = gr.Image(label="Generated Image") |
|
|
|
generate_btn.click( |
|
fn=edit, |
|
inputs=[init_image, source_prompt, target_prompt, num_steps, inject_step, guidance], |
|
outputs=[output_image] |
|
) |
|
|
|
|
|
return demo |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
demo = create_demo("flux-dev", "cuda") |
|
demo.launch() |