File size: 22,710 Bytes
b4754db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
import json
import random

import torch
import torchvision.transforms as transforms
# from decord import VideoReader
from PIL import Image
from torch.utils.data import Dataset
from transformers import CLIPImageProcessor
from jaxtyping import Float
import h5py


import os
import json
import torch
from torch import Tensor
from torch.utils.data import Dataset, DataLoader
from PIL import Image
import numpy as np
import cv2

from genstereo.dataset.EXRloader import load_exr
# from EXRloader import load_exr


def convert_left_to_right(left_embed, disparity, left_image, random_ratio=None):
    # Get the height, width, and channels from the left embedding
    _, height, width = left_embed.shape

    # Initialize tensors for right_embed, converted_right_image, and mask
    # right_embed = torch.full_like(left_embed, 255)
    # converted_right_image = torch.full_like(left_image, 255)
    right_embed = torch.zeros_like(left_embed)
    converted_right_image = torch.zeros_like(left_image)
    mask = torch.ones((height, width), dtype=torch.uint8, device=left_embed.device)

    # Round the disparity and convert to int
    disparity_rounded = torch.round(disparity).squeeze(0).long()  # [h, w]

    # Loop through the image dimensions and apply the conversion
    for y in range(height):
        for x in range(width):
            new_x = x - disparity_rounded[y, x]

            if 0 <= new_x < width:# and disparity_rounded[y, x] > 0:
                right_embed[:, y, new_x] = left_embed[:, y, x]
                converted_right_image[:, y, new_x] = left_image[:, y, x]
                mask[y, new_x] = 0  # Mark as valid in the mask
    return right_embed, mask, converted_right_image, disparity

def convert_left_to_right_torch(left_embed, disparity, left_image, random_ratio=None, dataset_name=None):
    """
    Convert left features to right features based on disparity values.
    
    Args:
        left_embed (torch.Tensor): [c, h, w] tensor representing left feature embeddings.
        disparity (torch.Tensor): [1, h, w] tensor of disparity values.
        left_image (torch.Tensor): [3, h, w] tensor representing the left image.

    Returns:
        right_embed (torch.Tensor): [c, h, w] tensor for the right feature embeddings.
        mask (torch.Tensor): [h, w] binary mask (1 = invalid, 0 = valid).
        converted_right_image (torch.Tensor): [3, h, w] tensor for the right image.
        disparity (torch.Tensor): [1, h, w] tensor for the disparity.
    """
    # Get the height, width, and channels from the left embedding
    _, height, width = left_embed.shape

    # Initialize tensors for right_embed, converted_right_image, and mask
    right_embed = torch.zeros_like(left_embed)
    # converted_right_image = torch.zeros_like(left_image)
    converted_right_image = -torch.ones_like(left_image)
    mask = torch.ones((height, width), dtype=torch.uint8, device=left_embed.device)

    # Round the disparity and convert to int
    disparity_rounded = torch.round(disparity).squeeze(0).long()  # [h, w]

    # Iterate over width and process each column for all rows
    for x in range(width):
        new_x = x - disparity_rounded[:, x]
        if dataset_name == 'InStereo2K' or dataset_name == 'DrivingStereo':
            valid_indices = (new_x >= 0) & (new_x < width) & (disparity_rounded[:, x] > 0)
        else:
            valid_indices = (new_x >= 0) & (new_x < width)
        valid_new_x = new_x[valid_indices]
        valid_y = torch.arange(height, device=left_embed.device)[valid_indices]

        right_embed[:, valid_y, valid_new_x] = left_embed[:, valid_y, x]
        converted_right_image[:, valid_y, valid_new_x] = left_image[:, valid_y, x]
        mask[valid_y, valid_new_x] = 0  # Mark as valid in the mask
    # Apply random masking if random_ratio is set
    if random_ratio is not None:
        # Create a random mask
        random_mask = torch.bernoulli(torch.full((height, width), 1 - random_ratio, device=left_embed.device)).byte()
        mask |= random_mask

        # Apply the mask to right_embed, converted_right_image, and disparity
        right_embed[:, mask == 1] = 0  # Mask out invalid regions in right_embed
        converted_right_image[:, mask == 1] = 0  # Mask out invalid regions in converted_right_image
        disparity[:, mask == 1] = 0  # Mask out invalid regions in disparity

    return right_embed, mask, converted_right_image, disparity

class StereoGenDataset(Dataset):
    def __init__(self,
        json_files,
        img_size,
        img_scale=(1.0, 1.0),
        img_ratio=(0.9, 1.0),
        drop_ratio=0.1,
        debug=False,
        use_coords=True,
        use_wapred=True,):
        """
        Args:
            json_files (list): Paths to the JSON file.
        """
        super().__init__()

        self.data = []
        for json_file in json_files:
            with open(json_file, 'r') as f:
                previous_length = len(self.data)
                self.data += json.load(f)
                added_length = len(self.data) - previous_length
                print(f"Loaded {added_length} samples from {json_file}")
        # self.data = self.data[:10]  # Limit the number of samples to 1M
        self.img_size = img_size

        self.embedder = self.get_embedder(2)
        self.drop_ratio = drop_ratio

        self.transform = transforms.Compose([
            transforms.ToTensor(),  # Convert PIL image to Tensor and scale to [0, 1]
        ])

        self.transform_pixels = transforms.Compose([
            transforms.ToTensor(),  # Converts image to Tensor
            transforms.Normalize([0.5], [0.5])  # Normalize to [-1, 1]
        ])
        self.clip_image_processor = CLIPImageProcessor()
        self.debug = debug
        self.use_coords = use_coords
        self.use_wapred = use_wapred

    def __len__(self):
        return len(self.data)

    def crop(self, img: Image) -> Image:
        W, H = img.size
        if W < H:
            left, right = 0, W
            top, bottom = np.ceil((H - W) / 2.), np.floor((H - W) / 2.) + W
        else:
            left, right = np.ceil((W - H) / 2.), np.floor((W - H) / 2.) + H
            top, bottom = 0, H
        img = img.crop((left, top, right, bottom))
        img = img.resize((self.img_size, self.img_size), Image.BILINEAR)
        return img

    def crop_and_resize_disp(self, disparity_left):
        # Determine the smaller side
        h, w = disparity_left.shape[:2]
        min_side = min(h, w)
        
        # Calculate the cropping coordinates
        start_x = (w - min_side) // 2
        start_y = (h - min_side) // 2
        
        # Crop the array to a square
        cropped_disparity = disparity_left[start_y:start_y + min_side, start_x:start_x + min_side]

        # Resize the cropped array to the desired size
        ratio = self.img_size / min_side
        resized_disparity = cv2.resize(cropped_disparity, (self.img_size, self.img_size), interpolation=cv2.INTER_LINEAR) * ratio
        
        return resized_disparity
    
    def random_crop_and_resize(self, image_left: Image, image_right: Image, disparity_left: np.ndarray):
        """
        Randomly crop and resize stereo image pairs and their disparity maps.

        Args:
            image_left (Image.Image): Left image (PIL).
            image_right (Image.Image): Right image (PIL).
            disparity_left (np.ndarray): Left disparity map.

        Returns:
            tuple: Resized left image, right image, and disparity map.
        """
        # Get the dimensions of the image and disparity map
        W, H = image_left.size
        h_disp, w_disp = disparity_left.shape[:2]

        # Ensure the image and disparity map have the same dimensions
        assert W == w_disp and H == h_disp, "Image and disparity dimensions must match."
        assert isinstance(image_left, Image.Image) and isinstance(image_right, Image.Image), \
            "Inputs must be PIL images."
        assert isinstance(disparity_left, np.ndarray), "Disparity must be a NumPy array."

        # Determine crop size
        if min(W, H) > 3 * self.img_size:
            crop_size = 3 * self.img_size
        elif min(W, H) > 2 * self.img_size:
            crop_size = 2 * self.img_size
        elif min(W, H) >= self.img_size:
            crop_size = self.img_size
        else:
            crop_size = min(W, H)

        # Calculate random crop coordinates
        max_x = W - crop_size
        max_y = H - crop_size
        left = random.randint(0, max(max_x, 0))
        top = random.randint(0, max(max_y, 0))
        right = left + crop_size
        bottom = top + crop_size

        # Perform cropping
        image_left_cropped = image_left.crop((left, top, right, bottom))
        image_right_cropped = image_right.crop((left, top, right, bottom))
        disparity_cropped = disparity_left[top:bottom, left:right]

        # Resize images and disparity map if necessary
        if crop_size != self.img_size:
            image_left_resized = image_left_cropped.resize((self.img_size, self.img_size), Image.BILINEAR)
            image_right_resized = image_right_cropped.resize((self.img_size, self.img_size), Image.BILINEAR)
            ratio = self.img_size / crop_size
            disparity_resized = cv2.resize(disparity_cropped, (self.img_size, self.img_size), interpolation=cv2.INTER_LINEAR) * ratio
        else:
            image_left_resized = image_left_cropped
            image_right_resized = image_right_cropped
            disparity_resized = disparity_cropped

        return image_left_resized, image_right_resized, disparity_resized

    class Embedder():
        def __init__(self, **kwargs) -> None:
            self.kwargs = kwargs
            self.create_embedding_fn()

        def create_embedding_fn(self) -> None:
            embed_fns = []
            d = self.kwargs['input_dims']
            out_dim = 0
            if self.kwargs['include_input']:
                embed_fns.append(lambda x : x)
                out_dim += d

            max_freq = self.kwargs['max_freq_log2']
            N_freqs = self.kwargs['num_freqs']

            if self.kwargs['log_sampling']:
                freq_bands = 2.**torch.linspace(0., max_freq, steps=N_freqs)
            else:
                freq_bands = torch.linspace(2.**0., 2.**max_freq, steps=N_freqs)

            for freq in freq_bands:
                for p_fn in self.kwargs['periodic_fns']:
                    embed_fns.append(lambda x, p_fn=p_fn, freq=freq : p_fn(x * freq))
                    out_dim += d

            self.embed_fns = embed_fns
            self.out_dim = out_dim

        def embed(self, inputs) -> Tensor:
            return torch.cat([fn(inputs) for fn in self.embed_fns], -1)

    def get_embedder(self, multires):
        embed_kwargs = {
            'include_input' : True,
            'input_dims' : 2,
            'max_freq_log2' : multires-1,
            'num_freqs' : multires,
            'log_sampling' : True,
            'periodic_fns' : [torch.sin, torch.cos],
        }

        embedder_obj = self.Embedder(**embed_kwargs)
        embed = lambda x, eo=embedder_obj : eo.embed(x)
        return embed

    def getdata(self, idx):
        try:
            if True:
                image_left_path = self.data[idx]['image_left'].replace('/home/f.qiao/Active', '/storage1/jacobsn/Active/user_f.qiao')
                image_right_path = self.data[idx]['image_right'].replace('/home/f.qiao/Active', '/storage1/jacobsn/Active/user_f.qiao')
                if 'depth_left' in self.data[idx]:
                    self.data[idx]['depth_left'] = self.data[idx]['depth_left'].replace('/home/f.qiao/Active', '/storage1/jacobsn/Active/user_f.qiao')
                elif 'disparity_left' in self.data[idx]:
                    self.data[idx]['disparity_left'] = self.data[idx]['disparity_left'].replace('/home/f.qiao/Active', '/storage1/jacobsn/Active/user_f.qiao')
            else:
                image_left_path = self.data[idx]['image_left']
                image_right_path = self.data[idx]['image_right']
            image_left = Image.open(image_left_path).convert('RGB')
            image_right = Image.open(image_right_path).convert('RGB')
            disparity_left = None
            dataset_name = self.data[idx]["dataset"]
            if dataset_name == 'TartanAir':
                depth_left_path = self.data[idx]['depth_left']
                disparity_left = 80./np.load(depth_left_path)
            elif dataset_name == 'IRS':
                depth_left_path = self.data[idx]['depth_left']
                disparity_left = load_exr(depth_left_path)
            elif dataset_name == 'DrivingStereo':
                # grpuond truth disparity
                disparity_left_path = self.data[idx]['disparity_left']
                disparity_left = np.array(Image.open(disparity_left_path), dtype=np.float32) / 256.0
                # pseudo disparity
                # disparity_left_path = self.data[idx]['disparity_left'].replace('train-disparity-map', 'train-disparity-map-pseudo').replace('.png', '.npy')
                # disparity_left = np.load(disparity_left_path)
            elif dataset_name == 'VKITTI2':
                depth_left_path = self.data[idx]['depth_left']
                depth_left = cv2.imread(depth_left_path, cv2.IMREAD_ANYDEPTH | cv2.IMREAD_ANYCOLOR) / 100.
                # invalid = depth_left >= 65535
                # print("num_invalid(VKITTI2):", depth_left[invalid].shape[0])
                disparity_left = 0.532725 * 725.0087 / (depth_left + 1e-5)  # f = 725.0087, b = 0.532725 # meter
            elif dataset_name == 'InStereo2K':
                disparity_left_path = self.data[idx]['disparity_left']
                disparity_left = Image.open(disparity_left_path)
                disparity_left = np.array(disparity_left).astype(np.float32)
                disparity_left = disparity_left/100
            elif dataset_name == 'Sintel':
                disparity_left_path = self.data[idx]['disparity_left']
                f_in = np.array(Image.open(disparity_left_path))
                d_r = f_in[:,:,0].astype('float64')
                d_g = f_in[:,:,1].astype('float64')
                d_b = f_in[:,:,2].astype('float64')
                disparity_left = d_r * 4 + d_g / (2**6) + d_b / (2**14)
            elif dataset_name == 'crestereo':
                disparity_left_path = self.data[idx]['disparity_left']
                disparity_left = cv2.imread(disparity_left_path, cv2.IMREAD_UNCHANGED).astype(np.float32) / 32
            elif dataset_name == 'Spring':
                disparity_left_path = self.data[idx]['disparity_left']
                with h5py.File(disparity_left_path, "r") as f:
                    disparity_left = np.array(f["disparity"][()]).astype(np.float32)
                disparity_left = np.ascontiguousarray(disparity_left, dtype=np.float32)[::2, ::2]
            elif dataset_name == 'Falling_Things':
                depth_left_path = self.data[idx]['depth_left']
                depth_left = np.array(Image.open(depth_left_path), dtype=np.float32)
                disparity_left = 460896 / depth_left # 6cm * 768.1605834960938px * 100 = 460896
            elif dataset_name == 'SimStereo':
                depth_left_path = self.data[idx]['disparity_left'].replace('left', 'right')
                disparity_left = np.load(depth_left_path)
            elif dataset_name == 'PLT-D3':
                depth_left_path = self.data[idx]['depth_left'].replace('left', 'right')
                disparity_left = 0.12 * 800 / np.load(depth_left_path)['arr_0']  # 0.12m * 800 / depth
            elif dataset_name == 'DynamicReplica':
                disparity_left_path = self.data[idx]['disparity_left']
                disparity_left = np.load(disparity_left_path)
            elif dataset_name == 'InfinigenSV':
                disparity_left_path = self.data[idx]['disparity_left']
                disparity_left = np.load(disparity_left_path)
            elif dataset_name == 'UnrealStereo4K':
                disparity_left_path = self.data[idx]['disparity_left']
                disparity_left = np.load(disparity_left_path, mmap_mode='c')
            elif dataset_name == 'skdataset':
                disparity_left_path = self.data[idx]['disparity_left']
                disparity_left = np.load(disparity_left_path)
            elif dataset_name == 'DIML':
                disparity_left_path = self.data[idx]['disparity_left']
                disparity_left = np.load(disparity_left_path)                
            else:
                print(f"Dataset {self.data[idx]['dataset']} is not supported.")
            return image_left, image_right, disparity_left, dataset_name
        except Exception as e:
            bad_file_path = self.data[idx]['image_left']  # Capture the bad file path
            print(f"Error loading data from {bad_file_path}: {e}")
            return None, None, None, None

    def __getitem__(self, idx):
    # def getitem(self, idx):
        # 1.Load images and depth maps
        image_left, image_right, disparity_left, dataset_name = self.getdata(idx)

        # Retry or skip sample if None is returned
        if image_left is None or image_right is None or disparity_left is None:
            print(f"Data at index {idx} is invalid. Skipping.")
            return self.__getitem__((idx + 1) % len(self.data))  # Try next index

        # 2. Crop and resize
        image_left, image_right, disparity_left = self.random_crop_and_resize(image_left, image_right, disparity_left)

        # 3. Generate coords
        grid: Float[Tensor, 'H W C'] = torch.stack(torch.meshgrid(
            torch.arange(self.img_size), torch.arange(self.img_size), indexing='xy'), dim=-1
        )  # torch.Size([512, 512, 2])

        # 4. Coordinates embedding.
        coords = torch.stack((grid[..., 0]/self.img_size, grid[..., 1]/self.img_size), dim=-1)
        embed = self.embedder(coords)
        embed = embed.permute(2, 0, 1)  # h w c -> c h w torch.Size([10, 512, 512])
        # 5. Convert to PyTorch tensors
        image_left_tensor = self.transform_pixels(image_left)
        image_right_tensor = self.transform_pixels(image_right)
        # image_left_tensor = torch.tensor(np.array(image_left), dtype=torch.float32).permute(2, 0, 1)
        # image_right_tensor = torch.tensor(np.array(image_right), dtype=torch.float32).permute(2, 0, 1)        
        disparity_left_tensor = torch.tensor(disparity_left, dtype=torch.float32).unsqueeze(0)  # Add a channel dimension

        # 6. Warp left to right
        random_mask = random.random()
        rando_ratio = random.random() if random_mask < self.drop_ratio else None
        warped_embed, mask, converted_right, disparity_left_tensor = convert_left_to_right_torch(embed, disparity_left_tensor, image_left_tensor, rando_ratio, dataset_name=dataset_name)
        if self.debug:
            save_folder = "./check_dataset/"
            os.makedirs(save_folder, exist_ok=True)
            # cv2.imwrite(f"{save_folder}/{dataset_name}_{idx}_left.png", (image_left_tensor.permute(1, 2, 0).numpy()[:, :, ::-1]/2+0.5)*255)
            cv2.imwrite(f"{save_folder}/{dataset_name}_{idx}_mask.png", mask.numpy()*255)
            cv2.imwrite(f"{save_folder}/{dataset_name}_{idx}_right.png", (image_right_tensor.permute(1, 2, 0).numpy()[:, :, ::-1]/2+0.5)*255)
            cv2.imwrite(f"{save_folder}/{dataset_name}_{idx}_converted_right.png", (converted_right.permute(1, 2, 0).numpy()[:, :, ::-1]/2+0.5)*255)
            # import IPython; IPython.embed()
        # print("embed.shape:", embed.shape, mask.unsqueeze(0).shape, image_left_tensor.shape, converted_right.shape)
        # 7. Add mask to the embeddings
        if self.use_coords and self.use_wapred:
            src_coords_embed = torch.cat(
                [embed, torch.zeros_like(mask.unsqueeze(0), device=mask.device), image_left_tensor], dim=0)
            trg_coords_embed = torch.cat([warped_embed, mask.unsqueeze(0), converted_right], dim=0)
        elif self.use_coords and not self.use_wapred:
            src_coords_embed = torch.cat([embed, torch.zeros_like(mask.unsqueeze(0), device=mask.device)], dim=0)
            trg_coords_embed = torch.cat([warped_embed, mask.unsqueeze(0)], dim=0)
        else:
            src_coords_embed = torch.cat([image_left_tensor, torch.zeros_like(mask.unsqueeze(0), device=mask.device)], dim=0)
            trg_coords_embed = torch.cat([converted_right, mask.unsqueeze(0)], dim=0)
        # 8. Get clip image
        clip_image = self.clip_image_processor(
            images=image_left, return_tensors="pt"
        ).pixel_values[0]

        sample = {
            'source': image_left_tensor,
            'correspondence': disparity_left_tensor,
            'target': image_right_tensor,
            'src_coords_embed': src_coords_embed,
            'trg_coords_embed': trg_coords_embed,
            'clip_images':clip_image,
            'converted_right': converted_right,
            'mask': mask.unsqueeze(0),
        }

        return sample


if __name__ == "__main__":
    # Load the dataset from JSON file
    json_file = [
        # "./data/tartanair/TartanAir_dataset_paths.json", \
        # "./data/IRS/IRS_dataset_paths.json", \
        # "./data/DrivingStereo/DrivingStereo_dataset_paths.json",\
        # "./data/VKITTI2/VKITTI2_dataset_paths_2.json", \
        # "./data/InStereo2K/InStereo2K_dataset_paths_20.json", \
        # "./data/Sintel/Sintel_dataset_paths_20.json", \
        # "./data/crestereo/crestereo_dataset_paths.json", \
        # "./data/Spring/Spring_dataset_paths_10.json", \
        # "./data/Falling_Things/Falling_Things_dataset_paths.json", \
        # "./data/SimStereo/SimStereo_dataset_paths.json", \
        # "./data/DynamicReplica/DynamicReplica_dataset_paths.json", \
        # "./data/PLT-D3/PLT-D3_dataset_paths_10.json", \
        # "./data/InfinigenSV/InfinigenSV_dataset_paths_2.json", \
        "./data/skdataset/sk_dataset_paths.json", \
        # "./data/DIML_Outdoor/DIML_Outdoor_dataset_paths.json", \
        # "./data/UnrealStereo4K/UnrealStereo4K_dataset_paths_5.json", \
        ]

    dataset = StereoGenDataset(json_file, img_size=512)
    print(f"Number of entries in the dataset: {len(dataset)}")

    # Sample 20 random entries
    sampled_indices = random.sample(range(len(dataset)), 20)

    # Loop through the sampled indices and access dataset entries
    for idx in sampled_indices:
        data_entry = dataset[idx]
        # You can now do something with data_entry, e.g., printing or processing it
        print(f"Processing dataset entry at index {idx}")
    # dataset.__getitem__(1000)