File size: 14,335 Bytes
f774f0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
from multiprocessing import set_start_method
#set_start_method("fork")

import sys
#sys.path.insert(0, "../HR-VITON-main")
from test_generator import *

import re
import inspect
from dataclasses import dataclass, field
from tqdm import tqdm
import pandas as pd
import os
import torch
import pandas as pd
import gradio as gr
import streamlit as st
from io import BytesIO

#### pip install streamlit-image-select
from streamlit_image_select import image_select

demo_image_dir = "demo_images_dir"
assert os.path.exists(demo_image_dir)
demo_images = list(map(lambda y: os.path.join(demo_image_dir, y) ,filter(lambda x: x.endswith(".png") or x.endswith(".jpeg") or x.endswith(".jpg")
 ,os.listdir(demo_image_dir))))
assert demo_images

#https://github.com/jrieke/streamlit-image-select/issues/10

#.image-box {
#    border: 1px solid rgba(49, 51, 63, 0.2);
#    border-radius: 0.25rem;
#    padding: calc(0.25rem + 1px);
#    height: 10rem;
#    min-width: 10rem;
#}

demo_images = list(map(lambda x: x.resize((256, 256)), map(Image.open, demo_images)))

@dataclass
class OPT:
    #### ConditionGenerator
    out_layer = None
    warp_feature = None
    #### SPADEGenerator
    semantic_nc = None
    fine_height = None
    fine_width = None
    ngf = None
    num_upsampling_layers = None
    norm_G = None
    gen_semantic_nc = None
    #### weight load
    tocg_checkpoint = None
    gen_checkpoint = None
    cuda = False

    data_list = None
    datamode = None
    dataroot = None

    batch_size = None
    shuffle = False
    workers = None

    clothmask_composition = None
    occlusion = False
    datasetting = None

opt = OPT()
opt.out_layer = "relu"
opt.warp_feature = "T1"

input1_nc = 4  # cloth + cloth-mask
nc = 13
input2_nc = nc + 3  # parse_agnostic + densepose
output_nc = nc
tocg = ConditionGenerator(opt,
input1_nc=input1_nc,
input2_nc=input2_nc, output_nc=output_nc, ngf=96, norm_layer=nn.BatchNorm2d)

#### SPADEResBlock
from network_generator import SPADEResBlock

opt.semantic_nc = 7
opt.fine_height = 1024
opt.fine_width = 768
opt.ngf = 64
opt.num_upsampling_layers = "most"
opt.norm_G = "spectralaliasinstance"
opt.gen_semantic_nc = 7

generator = SPADEGenerator(opt, 3+3+3)
generator.print_network()

#### https://drive.google.com/open?id=1XJTCdRBOPVgVTmqzhVGFAgMm2NLkw5uQ&authuser=0
opt.tocg_checkpoint = "mtviton.pth"
#### https://drive.google.com/open?id=1T5_YDUhYSSKPC_nZMk2NeC-XXUFoYeNy&authuser=0
opt.gen_checkpoint = "gen.pth"

opt.cuda = False

load_checkpoint(tocg, opt.tocg_checkpoint,opt)
load_checkpoint_G(generator, opt.gen_checkpoint,opt)

#### def test scope
tocg.eval()
generator.eval()

opt.data_list = "test_pairs.txt"
opt.datamode = "test"
opt.dataroot = "zalando-hd-resized"

opt.batch_size = 1
opt.shuffle = False
opt.workers = 1
opt.semantic_nc = 13

test_dataset = CPDatasetTest(opt)
test_loader = CPDataLoader(opt, test_dataset)

def construct_images(img_tensors, img_names = [None]):
    #for img_tensor, img_name in zip(img_tensors, img_names):
    for img_tensor, img_name in zip(img_tensors, img_names):
        tensor = (img_tensor.clone() + 1) * 0.5 * 255
        tensor = tensor.cpu().clamp(0, 255)
        try:
            array = tensor.numpy().astype('uint8')
        except:
            array = tensor.detach().numpy().astype('uint8')

        if array.shape[0] == 1:
            array = array.squeeze(0)
        elif array.shape[0] == 3:
            array = array.swapaxes(0, 1).swapaxes(1, 2)

        im = Image.fromarray(array)
        return im

def single_pred_slim_func(opt, inputs, tocg = tocg, generator = generator):
    gauss = tgm.image.GaussianBlur((15, 15), (3, 3))
    if opt.cuda:
        gauss = gauss.cuda()

    # Model
    if opt.cuda:
        tocg.cuda()
    tocg.eval()
    generator.eval()

    num = 0
    iter_start_time = time.time()
    with torch.no_grad():
        for inputs in [inputs]:
            if opt.cuda :
                #pose_map = inputs['pose'].cuda()
                pre_clothes_mask = inputs['cloth_mask'][opt.datasetting].cuda()
                #label = inputs['parse']
                parse_agnostic = inputs['parse_agnostic']
                agnostic = inputs['agnostic'].cuda()
                clothes = inputs['cloth'][opt.datasetting].cuda() # target cloth
                densepose = inputs['densepose'].cuda()
                #im = inputs['image']
                #input_label, input_parse_agnostic = label.cuda(), parse_agnostic.cuda()
                input_parse_agnostic = parse_agnostic.cuda()
                pre_clothes_mask = torch.FloatTensor((pre_clothes_mask.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
            else :
                #pose_map = inputs['pose']
                pre_clothes_mask = inputs['cloth_mask'][opt.datasetting]
                #label = inputs['parse']
                parse_agnostic = inputs['parse_agnostic']
                agnostic = inputs['agnostic']
                clothes = inputs['cloth'][opt.datasetting] # target cloth
                densepose = inputs['densepose']
                #im = inputs['image']
                #input_label, input_parse_agnostic = label, parse_agnostic
                input_parse_agnostic = parse_agnostic
                pre_clothes_mask = torch.FloatTensor((pre_clothes_mask.detach().cpu().numpy() > 0.5).astype(np.float))



            # down
            #pose_map_down = F.interpolate(pose_map, size=(256, 192), mode='bilinear')
            pre_clothes_mask_down = F.interpolate(pre_clothes_mask, size=(256, 192), mode='nearest')
            #input_label_down = F.interpolate(input_label, size=(256, 192), mode='bilinear')
            input_parse_agnostic_down = F.interpolate(input_parse_agnostic, size=(256, 192), mode='nearest')
            #agnostic_down = F.interpolate(agnostic, size=(256, 192), mode='nearest')
            clothes_down = F.interpolate(clothes, size=(256, 192), mode='bilinear')
            densepose_down = F.interpolate(densepose, size=(256, 192), mode='bilinear')

            shape = pre_clothes_mask.shape

            # multi-task inputs
            input1 = torch.cat([clothes_down, pre_clothes_mask_down], 1)
            input2 = torch.cat([input_parse_agnostic_down, densepose_down], 1)

            # forward
            flow_list, fake_segmap, warped_cloth_paired, warped_clothmask_paired = tocg(opt,input1, input2)

            # warped cloth mask one hot
            if opt.cuda :
                warped_cm_onehot = torch.FloatTensor((warped_clothmask_paired.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
            else :
                warped_cm_onehot = torch.FloatTensor((warped_clothmask_paired.detach().cpu().numpy() > 0.5).astype(np.float))

            if opt.clothmask_composition != 'no_composition':
                if opt.clothmask_composition == 'detach':
                    cloth_mask = torch.ones_like(fake_segmap)
                    cloth_mask[:,3:4, :, :] = warped_cm_onehot
                    fake_segmap = fake_segmap * cloth_mask

                if opt.clothmask_composition == 'warp_grad':
                    cloth_mask = torch.ones_like(fake_segmap)
                    cloth_mask[:,3:4, :, :] = warped_clothmask_paired
                    fake_segmap = fake_segmap * cloth_mask

            # make generator input parse map
            fake_parse_gauss = gauss(F.interpolate(fake_segmap, size=(opt.fine_height, opt.fine_width), mode='bilinear'))
            fake_parse = fake_parse_gauss.argmax(dim=1)[:, None]

            if opt.cuda :
                old_parse = torch.FloatTensor(fake_parse.size(0), 13, opt.fine_height, opt.fine_width).zero_().cuda()
            else:
                old_parse = torch.FloatTensor(fake_parse.size(0), 13, opt.fine_height, opt.fine_width).zero_()
            old_parse.scatter_(1, fake_parse, 1.0)

            labels = {
                0:  ['background',  [0]],
                1:  ['paste',       [2, 4, 7, 8, 9, 10, 11]],
                2:  ['upper',       [3]],
                3:  ['hair',        [1]],
                4:  ['left_arm',    [5]],
                5:  ['right_arm',   [6]],
                6:  ['noise',       [12]]
            }
            if opt.cuda :
                parse = torch.FloatTensor(fake_parse.size(0), 7, opt.fine_height, opt.fine_width).zero_().cuda()
            else:
                parse = torch.FloatTensor(fake_parse.size(0), 7, opt.fine_height, opt.fine_width).zero_()
            for i in range(len(labels)):
                for label in labels[i][1]:
                    parse[:, i] += old_parse[:, label]

            # warped cloth
            N, _, iH, iW = clothes.shape
            flow = F.interpolate(flow_list[-1].permute(0, 3, 1, 2), size=(iH, iW), mode='bilinear').permute(0, 2, 3, 1)
            flow_norm = torch.cat([flow[:, :, :, 0:1] / ((96 - 1.0) / 2.0), flow[:, :, :, 1:2] / ((128 - 1.0) / 2.0)], 3)

            grid = make_grid(N, iH, iW,opt)
            warped_grid = grid + flow_norm
            warped_cloth = F.grid_sample(clothes, warped_grid, padding_mode='border')
            warped_clothmask = F.grid_sample(pre_clothes_mask, warped_grid, padding_mode='border')
            if opt.occlusion:
                warped_clothmask = remove_overlap(F.softmax(fake_parse_gauss, dim=1), warped_clothmask)
                warped_cloth = warped_cloth * warped_clothmask + torch.ones_like(warped_cloth) * (1-warped_clothmask)


            output = generator(torch.cat((agnostic, densepose, warped_cloth), dim=1), parse)
            # save output
            return output
            #save_images(output, unpaired_names, output_dir)
            #num += shape[0]
            #print(num)

opt.clothmask_composition = "warp_grad"
opt.occlusion = False
opt.datasetting = "unpaired"

def read_img_and_trans(dataset ,opt ,img_path):
    if type(img_path) in [type("")]:
        im = Image.open(img_path)
    else:
        im = img_path
    im = transforms.Resize(opt.fine_width, interpolation=2)(im)
    im = dataset.transform(im)
    return im

import sys
sys.path.insert(0, "fashion-eye-try-on")

import os
from PIL import Image
import gradio as gr
from cloth_segmentation import generate_cloth_mask

def generate_cloth_mask_and_display(cloth_img):
    path = 'fashion-eye-try-on/cloth/cloth.jpg'
    if os.path.exists(path):
        os.remove(path)
    cloth_img.save(path)
    try:
        # os.system('.\cloth_segmentation\generate_cloth_mask.py')
        generate_cloth_mask()
    except Exception as e:
        print(e)
        return
    cloth_mask_img = Image.open("fashion-eye-try-on/cloth_mask/cloth.jpg")
    return cloth_mask_img

def take_human_feature_from_dataset(dataset, idx):
    inputs_upper = list(torch.utils.data.DataLoader(
                    [dataset[idx]], batch_size=1))[0]
    return  {
        "parse_agnostic":  inputs_upper["parse_agnostic"],
        "agnostic": inputs_upper["agnostic"],
        "densepose":  inputs_upper["densepose"],
    }

def take_all_feature_with_dataset(cloth_img_path, idx, opt = opt, dataset = test_dataset, only_show_human = False):
    if type(cloth_img_path) != type(""):
        assert hasattr(cloth_img_path, "save")
        cloth_img_path.save("tmp_cloth.jpg")
        cloth_img_path = "tmp_cloth.jpg"
    assert type(cloth_img_path) == type("")
    inputs_upper_dict = take_human_feature_from_dataset(dataset, idx)
    if only_show_human:
        return Image.fromarray((inputs_upper_dict["densepose"][0].numpy().transpose((1, 2, 0)) * 255).astype(np.uint8))
    cloth_readed = read_img_and_trans(dataset, opt,
        cloth_img_path
                      )
    #assert ((cloth_readed - inputs_upper["cloth"][opt.datasetting][0]) ** 2).sum().numpy() < 1e-15
    cloth_input = {
        opt.datasetting: cloth_readed[None,:]
    }
    mask_img = generate_cloth_mask_and_display(
        Image.open(
        cloth_img_path
        )
    )
    cloth_mask_input = {
    opt.datasetting:
    torch.Tensor((np.asarray(mask_img) / 255))[None, None, :]
    }
    inputs_upper_dict["cloth"] = cloth_input
    inputs_upper_dict["cloth_mask"] = cloth_mask_input
    return inputs_upper_dict

def pred_func(cloth_img, pidx
):
    idx = int(pidx)
    im = cloth_img

    #### truly input
    inputs_upper_dict = take_all_feature_with_dataset(
        im, idx, only_show_human = False)

    output_slim = single_pred_slim_func(opt, inputs_upper_dict)
    output_img = construct_images(output_slim)
    return output_img

option = st.selectbox(
        "Choose cloth image or Upload cloth image",
        ("Choose", "Upload", )
    )
if type(option) != type(""):
    option = "Choose"

img = None
uploaded_file = None
if option == "Upload":
    # To read file as bytes:
    uploaded_file = st.file_uploader("Upload img")
    if uploaded_file is not None:
        bytes_data = uploaded_file.getvalue()
        img = Image.open(BytesIO(bytes_data))
        cloth_img = img.convert("RGB").resize((256 + 128, 512))
        st.image(cloth_img)
        uploaded_file = st.selectbox(
                    "Have Choose the image",
                    ("Wait", "Have Done")
        )
else:
    img = image_select("Choose img", demo_images)
    #img = Image.open(img)
    cloth_img = img.convert("RGB").resize((256 + 128, 512))
    st.image(cloth_img)
    uploaded_file = st.selectbox(
            "Have Choose the image",
            ("Wait", "Have Done")
    )

if img is not None and (uploaded_file is not "Wait" and uploaded_file is not None):
    cloth_img = img.convert("RGB").resize((768, 1024))
    #pidx = 44
    pidx_index_list = [44, 84, 67]
    poeses = []
    for idx in range(len(pidx_index_list)):
        poeses.append(
            take_all_feature_with_dataset(
                cloth_img, pidx_index_list[idx], only_show_human = True)
        )

    col1, col2, col3 = st.columns(3)

    with col1:
        st.header("Pose 0")
        pose_img = poeses[0]
        st.image(pose_img)
        b = pred_func(cloth_img, pidx_index_list[0])
        st.image(b)

    with col2:
        st.header("Pose 1")
        pose_img = poeses[1]
        st.image(pose_img)
        b = pred_func(cloth_img, pidx_index_list[1])
        st.image(b)

    with col3:
        st.header("Pose 2")
        pose_img = poeses[2]
        st.image(pose_img)
        b = pred_func(cloth_img, pidx_index_list[2])
        st.image(b)