File size: 17,351 Bytes
f774f0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
from torch.nn.utils import spectral_norm
import numpy as np


class BaseNetwork(nn.Module):
    def __init__(self):
        super(BaseNetwork, self).__init__()

    def print_network(self):
        num_params = 0
        for param in self.parameters():
            num_params += param.numel()
        print("Network [{}] was created. Total number of parameters: {:.1f} million. "
              "To see the architecture, do print(network).".format(self.__class__.__name__, num_params / 1000000))

    def init_weights(self, init_type='normal', gain=0.02):
        def init_func(m):
            classname = m.__class__.__name__
            if 'BatchNorm2d' in classname:
                if hasattr(m, 'weight') and m.weight is not None:
                    init.normal_(m.weight.data, 1.0, gain)
                if hasattr(m, 'bias') and m.bias is not None:
                    init.constant_(m.bias.data, 0.0)
            elif ('Conv' in classname or 'Linear' in classname) and hasattr(m, 'weight'):
                if init_type == 'normal':
                    init.normal_(m.weight.data, 0.0, gain)
                elif init_type == 'xavier':
                    init.xavier_normal_(m.weight.data, gain=gain)
                elif init_type == 'xavier_uniform':
                    init.xavier_uniform_(m.weight.data, gain=1.0)
                elif init_type == 'kaiming':
                    init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
                elif init_type == 'orthogonal':
                    init.orthogonal_(m.weight.data, gain=gain)
                elif init_type == 'none':  # uses pytorch's default init method
                    m.reset_parameters()
                else:
                    raise NotImplementedError("initialization method '{}' is not implemented".format(init_type))
                if hasattr(m, 'bias') and m.bias is not None:
                    init.constant_(m.bias.data, 0.0)

        self.apply(init_func)

    def forward(self, *inputs):
        pass


class MaskNorm(nn.Module):
    def __init__(self, norm_nc):
        super(MaskNorm, self).__init__()

        self.norm_layer = nn.InstanceNorm2d(norm_nc, affine=False)

    def normalize_region(self, region, mask):
        b, c, h, w = region.size()

        num_pixels = mask.sum((2, 3), keepdim=True)  # size: (b, 1, 1, 1)
        num_pixels[num_pixels == 0] = 1
        mu = region.sum((2, 3), keepdim=True) / num_pixels  # size: (b, c, 1, 1)

        normalized_region = self.norm_layer(region + (1 - mask) * mu)
        return normalized_region * torch.sqrt(num_pixels / (h * w))

    def forward(self, x, mask):
        mask = mask.detach()
        normalized_foreground = self.normalize_region(x * mask, mask)
        normalized_background = self.normalize_region(x * (1 - mask), 1 - mask)
        return normalized_foreground + normalized_background


class SPADENorm(nn.Module):
    def __init__(self,opt, norm_type, norm_nc, label_nc):
        super(SPADENorm, self).__init__()
        self.param_opt=opt
        self.noise_scale = nn.Parameter(torch.zeros(norm_nc))

        assert norm_type.startswith('alias')
        param_free_norm_type = norm_type[len('alias'):]
        if param_free_norm_type == 'batch':
            self.param_free_norm = nn.BatchNorm2d(norm_nc, affine=False)
        elif param_free_norm_type == 'instance':
            self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False)
        elif param_free_norm_type == 'mask':
            self.param_free_norm = MaskNorm(norm_nc)
        else:
            raise ValueError(
                "'{}' is not a recognized parameter-free normalization type in SPADENorm".format(param_free_norm_type)
            )

        nhidden = 128
        ks = 3
        pw = ks // 2
        self.conv_shared = nn.Sequential(nn.Conv2d(label_nc, nhidden, kernel_size=ks, padding=pw), nn.ReLU())
        self.conv_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw)
        self.conv_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw)

    def forward(self, x, seg, misalign_mask=None):
        # Part 1. Generate parameter-free normalized activations.
        b, c, h, w = x.size()
        if self.param_opt.cuda :
            noise = (torch.randn(b, w, h, 1).cuda() * self.noise_scale).transpose(1, 3)
        else:
            noise = (torch.randn(b, w, h, 1)* self.noise_scale).transpose(1, 3)


        if misalign_mask is None:
            normalized = self.param_free_norm(x + noise)
        else:
            normalized = self.param_free_norm(x + noise, misalign_mask)

        # Part 2. Produce affine parameters conditioned on the segmentation map.
        actv = self.conv_shared(seg)
        gamma = self.conv_gamma(actv)
        beta = self.conv_beta(actv)

        # Apply the affine parameters.
        output = normalized * (1 + gamma) + beta
        return output


class SPADEResBlock(nn.Module):
    def __init__(self, opt, input_nc, output_nc, use_mask_norm=True):
        super(SPADEResBlock, self).__init__()
        self.param_opt=opt
        self.learned_shortcut = (input_nc != output_nc)
        middle_nc = min(input_nc, output_nc)

        self.conv_0 = nn.Conv2d(input_nc, middle_nc, kernel_size=3, padding=1)
        self.conv_1 = nn.Conv2d(middle_nc, output_nc, kernel_size=3, padding=1)
        if self.learned_shortcut:
            self.conv_s = nn.Conv2d(input_nc, output_nc, kernel_size=1, bias=False)

        subnorm_type = opt.norm_G
        if subnorm_type.startswith('spectral'):
            subnorm_type = subnorm_type[len('spectral'):]
            self.conv_0 = spectral_norm(self.conv_0)
            self.conv_1 = spectral_norm(self.conv_1)
            if self.learned_shortcut:
                self.conv_s = spectral_norm(self.conv_s)

        gen_semantic_nc = opt.gen_semantic_nc
        if use_mask_norm:
            subnorm_type = 'aliasmask'
            gen_semantic_nc = gen_semantic_nc + 1

        self.norm_0 = SPADENorm(opt,subnorm_type, input_nc, gen_semantic_nc)
        self.norm_1 = SPADENorm(opt,subnorm_type, middle_nc, gen_semantic_nc)
        if self.learned_shortcut:
            self.norm_s = SPADENorm(opt,subnorm_type, input_nc, gen_semantic_nc)

        self.relu = nn.LeakyReLU(0.2)

    def shortcut(self, x, seg, misalign_mask):
        if self.learned_shortcut:
            return self.conv_s(self.norm_s(x, seg, misalign_mask))
        else:
            return x

    def forward(self, x, seg, misalign_mask=None):
        seg = F.interpolate(seg, size=x.size()[2:], mode='nearest')
        if misalign_mask is not None:
            misalign_mask = F.interpolate(misalign_mask, size=x.size()[2:], mode='nearest')

        x_s = self.shortcut(x, seg, misalign_mask)

        dx = self.conv_0(self.relu(self.norm_0(x, seg, misalign_mask)))
        dx = self.conv_1(self.relu(self.norm_1(dx, seg, misalign_mask)))
        output = x_s + dx
        return output


class SPADEGenerator(BaseNetwork):
    def __init__(self, opt, input_nc):
        super(SPADEGenerator, self).__init__()
        self.num_upsampling_layers = opt.num_upsampling_layers
        self.param_opt=opt
        self.sh, self.sw = self.compute_latent_vector_size(opt)

        nf = opt.ngf
        self.conv_0 = nn.Conv2d(input_nc, nf * 16, kernel_size=3, padding=1)
        for i in range(1, 8):
            self.add_module('conv_{}'.format(i), nn.Conv2d(input_nc, 16, kernel_size=3, padding=1))

        self.head_0 = SPADEResBlock(opt, nf * 16, nf * 16, use_mask_norm=False)

        self.G_middle_0 = SPADEResBlock(opt, nf * 16 + 16, nf * 16, use_mask_norm=False)
        self.G_middle_1 = SPADEResBlock(opt, nf * 16 + 16, nf * 16, use_mask_norm=False)

        self.up_0 = SPADEResBlock(opt, nf * 16 + 16, nf * 8, use_mask_norm=False)
        self.up_1 = SPADEResBlock(opt, nf * 8 + 16, nf * 4, use_mask_norm=False)
        self.up_2 = SPADEResBlock(opt, nf * 4 + 16, nf * 2, use_mask_norm=False)
        self.up_3 = SPADEResBlock(opt, nf * 2 + 16, nf * 1, use_mask_norm=False)
        if self.num_upsampling_layers == 'most':
            self.up_4 = SPADEResBlock(opt, nf * 1 + 16, nf // 2, use_mask_norm=False)
            nf = nf // 2

        self.conv_img = nn.Conv2d(nf, 3, kernel_size=3, padding=1)

        self.up = nn.Upsample(scale_factor=2, mode='nearest')
        self.relu = nn.LeakyReLU(0.2)
        self.tanh = nn.Tanh()

    def compute_latent_vector_size(self, opt):
        if self.num_upsampling_layers == 'normal':
            num_up_layers = 5
        elif self.num_upsampling_layers == 'more':
            num_up_layers = 6
        elif self.num_upsampling_layers == 'most':
            num_up_layers = 7
        else:
            raise ValueError("opt.num_upsampling_layers '{}' is not recognized".format(self.num_upsampling_layers))

        sh = opt.fine_height // 2**num_up_layers
        sw = opt.fine_width // 2**num_up_layers
        return sh, sw

    def forward(self, x, seg):
        samples = [F.interpolate(x, size=(self.sh * 2**i, self.sw * 2**i), mode='nearest') for i in range(8)]
        features = [self._modules['conv_{}'.format(i)](samples[i]) for i in range(8)]

        x = self.head_0(features[0], seg)
        x = self.up(x)
        x = self.G_middle_0(torch.cat((x, features[1]), 1), seg)
        if self.num_upsampling_layers in ['more', 'most']:
            x = self.up(x)
        x = self.G_middle_1(torch.cat((x, features[2]), 1), seg)

        x = self.up(x)
        x = self.up_0(torch.cat((x, features[3]), 1), seg)
        x = self.up(x)
        x = self.up_1(torch.cat((x, features[4]), 1), seg)
        x = self.up(x)
        x = self.up_2(torch.cat((x, features[5]), 1), seg)
        x = self.up(x)
        x = self.up_3(torch.cat((x, features[6]), 1), seg)
        if self.num_upsampling_layers == 'most':
            x = self.up(x)
            x = self.up_4(torch.cat((x, features[7]), 1), seg)

        x = self.conv_img(self.relu(x))
        return self.tanh(x)
########################################################################

########################################################################
    
class NLayerDiscriminator(BaseNetwork):

    def __init__(self, opt):
        super().__init__()
        self.no_ganFeat_loss = opt.no_ganFeat_loss
        nf = opt.ndf

        kw = 4
        pw = int(np.ceil((kw - 1.0) / 2))
        norm_layer = get_nonspade_norm_layer(opt.norm_D)

        input_nc = opt.gen_semantic_nc + 3
        # input_nc = opt.gen_semantic_nc + 13
        sequence = [[nn.Conv2d(input_nc, nf, kernel_size=kw, stride=2, padding=pw),
                     nn.LeakyReLU(0.2, False)]]

        for n in range(1, opt.n_layers_D):
            nf_prev = nf
            nf = min(nf * 2, 512)
            sequence += [[norm_layer(nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=pw)),
                          nn.LeakyReLU(0.2, False)]]

        sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=pw)]]

        # We divide the layers into groups to extract intermediate layer outputs
        for n in range(len(sequence)):
            self.add_module('model' + str(n), nn.Sequential(*sequence[n]))

    def forward(self, input):
        results = [input]
        for submodel in self.children():
            intermediate_output = submodel(results[-1])
            results.append(intermediate_output)

        get_intermediate_features = not self.no_ganFeat_loss
        if get_intermediate_features:
            return results[1:]
        else:
            return results[-1]


class MultiscaleDiscriminator(BaseNetwork):

    def __init__(self, opt):
        super().__init__()
        self.no_ganFeat_loss = opt.no_ganFeat_loss

        for i in range(opt.num_D):
            subnetD = NLayerDiscriminator(opt)
            self.add_module('discriminator_%d' % i, subnetD)

    def downsample(self, input):
        return F.avg_pool2d(input, kernel_size=3, stride=2, padding=[1, 1], count_include_pad=False)

    # Returns list of lists of discriminator outputs.
    # The final result is of size opt.num_D x opt.n_layers_D
    def forward(self, input):
        result = []
        get_intermediate_features = not self.no_ganFeat_loss
        for name, D in self.named_children():
            out = D(input)
            if not get_intermediate_features:
                out = [out]
            result.append(out)
            input = self.downsample(input)

        return result
    
class GANLoss(nn.Module):
    def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0, tensor=torch.FloatTensor):
        super(GANLoss, self).__init__()
        self.real_label = target_real_label
        self.fake_label = target_fake_label
        self.real_label_tensor = None
        self.fake_label_tensor = None
        self.zero_tensor = None
        self.Tensor = tensor
        self.gan_mode = gan_mode
        if gan_mode == 'ls':
            pass
        elif gan_mode == 'original':
            pass
        elif gan_mode == 'w':
            pass
        elif gan_mode == 'hinge':
            pass
        else:
            raise ValueError('Unexpected gan_mode {}'.format(gan_mode))

    def get_target_tensor(self, input, target_is_real):
        if target_is_real:
            if self.real_label_tensor is None:
                self.real_label_tensor = self.Tensor(1).fill_(self.real_label)
                self.real_label_tensor.requires_grad_(False)
            return self.real_label_tensor.expand_as(input)
        else:
            if self.fake_label_tensor is None:
                self.fake_label_tensor = self.Tensor(1).fill_(self.fake_label)
                self.fake_label_tensor.requires_grad_(False)
            return self.fake_label_tensor.expand_as(input)

    def get_zero_tensor(self, input):
        if self.zero_tensor is None:
            self.zero_tensor = self.Tensor(1).fill_(0)
            self.zero_tensor.requires_grad_(False)
        return self.zero_tensor.expand_as(input)

    def loss(self, input, target_is_real, for_discriminator=True):
        if self.gan_mode == 'original':  # cross entropy loss
            target_tensor = self.get_target_tensor(input, target_is_real)
            loss = F.binary_cross_entropy_with_logits(input, target_tensor)
            return loss
        elif self.gan_mode == 'ls':
            target_tensor = self.get_target_tensor(input, target_is_real)
            return F.mse_loss(input, target_tensor)
        elif self.gan_mode == 'hinge':
            if for_discriminator:
                if target_is_real:
                    minval = torch.min(input - 1, self.get_zero_tensor(input))
                    loss = -torch.mean(minval)
                else:
                    minval = torch.min(-input - 1, self.get_zero_tensor(input))
                    loss = -torch.mean(minval)
            else:
                assert target_is_real, "The generator's hinge loss must be aiming for real"
                loss = -torch.mean(input)
            return loss
        else:
            # wgan
            if target_is_real:
                return -input.mean()
            else:
                return input.mean()

    def __call__(self, input, target_is_real, for_discriminator=True):
        # computing loss is a bit complicated because |input| may not be
        # a tensor, but list of tensors in case of multiscale discriminator
        if isinstance(input, list):
            loss = 0
            for pred_i in input:
                if isinstance(pred_i, list):
                    pred_i = pred_i[-1]
                loss_tensor = self.loss(pred_i, target_is_real, for_discriminator)
                bs = 1 if len(loss_tensor.size()) == 0 else loss_tensor.size(0)
                new_loss = torch.mean(loss_tensor.view(bs, -1), dim=1)
                loss += new_loss
            return loss / len(input)
        else:
            return self.loss(input, target_is_real, for_discriminator)


def get_nonspade_norm_layer(norm_type='instance'):
    def get_out_channel(layer):
        if hasattr(layer, 'out_channels'):
            return getattr(layer, 'out_channels')
        return layer.weight.size(0)

    def add_norm_layer(layer):
        nonlocal norm_type
        if norm_type.startswith('spectral'):
            layer = spectral_norm(layer)
            subnorm_type = norm_type[len('spectral'):]

        if subnorm_type == 'none' or len(subnorm_type) == 0:
            return layer

        # remove bias in the previous layer, which is meaningless
        # since it has no effect after normalization
        if getattr(layer, 'bias', None) is not None:
            delattr(layer, 'bias')
            layer.register_parameter('bias', None)

        if subnorm_type == 'batch':
            norm_layer = nn.BatchNorm2d(get_out_channel(layer), affine=True)
        # elif subnorm_type == 'sync_batch':
        #     norm_layer = SynchronizedBatchNorm2d(get_out_channel(layer), affine=True)
        elif subnorm_type == 'instance':
            norm_layer = nn.InstanceNorm2d(get_out_channel(layer), affine=False)
        else:
            raise ValueError('normalization layer %s is not recognized' % subnorm_type)

        return nn.Sequential(layer, norm_layer)

    return add_norm_layer