Spaces:
Running
Running
File size: 17,351 Bytes
f774f0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
from torch.nn.utils import spectral_norm
import numpy as np
class BaseNetwork(nn.Module):
def __init__(self):
super(BaseNetwork, self).__init__()
def print_network(self):
num_params = 0
for param in self.parameters():
num_params += param.numel()
print("Network [{}] was created. Total number of parameters: {:.1f} million. "
"To see the architecture, do print(network).".format(self.__class__.__name__, num_params / 1000000))
def init_weights(self, init_type='normal', gain=0.02):
def init_func(m):
classname = m.__class__.__name__
if 'BatchNorm2d' in classname:
if hasattr(m, 'weight') and m.weight is not None:
init.normal_(m.weight.data, 1.0, gain)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif ('Conv' in classname or 'Linear' in classname) and hasattr(m, 'weight'):
if init_type == 'normal':
init.normal_(m.weight.data, 0.0, gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=gain)
elif init_type == 'xavier_uniform':
init.xavier_uniform_(m.weight.data, gain=1.0)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=gain)
elif init_type == 'none': # uses pytorch's default init method
m.reset_parameters()
else:
raise NotImplementedError("initialization method '{}' is not implemented".format(init_type))
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
self.apply(init_func)
def forward(self, *inputs):
pass
class MaskNorm(nn.Module):
def __init__(self, norm_nc):
super(MaskNorm, self).__init__()
self.norm_layer = nn.InstanceNorm2d(norm_nc, affine=False)
def normalize_region(self, region, mask):
b, c, h, w = region.size()
num_pixels = mask.sum((2, 3), keepdim=True) # size: (b, 1, 1, 1)
num_pixels[num_pixels == 0] = 1
mu = region.sum((2, 3), keepdim=True) / num_pixels # size: (b, c, 1, 1)
normalized_region = self.norm_layer(region + (1 - mask) * mu)
return normalized_region * torch.sqrt(num_pixels / (h * w))
def forward(self, x, mask):
mask = mask.detach()
normalized_foreground = self.normalize_region(x * mask, mask)
normalized_background = self.normalize_region(x * (1 - mask), 1 - mask)
return normalized_foreground + normalized_background
class SPADENorm(nn.Module):
def __init__(self,opt, norm_type, norm_nc, label_nc):
super(SPADENorm, self).__init__()
self.param_opt=opt
self.noise_scale = nn.Parameter(torch.zeros(norm_nc))
assert norm_type.startswith('alias')
param_free_norm_type = norm_type[len('alias'):]
if param_free_norm_type == 'batch':
self.param_free_norm = nn.BatchNorm2d(norm_nc, affine=False)
elif param_free_norm_type == 'instance':
self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False)
elif param_free_norm_type == 'mask':
self.param_free_norm = MaskNorm(norm_nc)
else:
raise ValueError(
"'{}' is not a recognized parameter-free normalization type in SPADENorm".format(param_free_norm_type)
)
nhidden = 128
ks = 3
pw = ks // 2
self.conv_shared = nn.Sequential(nn.Conv2d(label_nc, nhidden, kernel_size=ks, padding=pw), nn.ReLU())
self.conv_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw)
self.conv_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw)
def forward(self, x, seg, misalign_mask=None):
# Part 1. Generate parameter-free normalized activations.
b, c, h, w = x.size()
if self.param_opt.cuda :
noise = (torch.randn(b, w, h, 1).cuda() * self.noise_scale).transpose(1, 3)
else:
noise = (torch.randn(b, w, h, 1)* self.noise_scale).transpose(1, 3)
if misalign_mask is None:
normalized = self.param_free_norm(x + noise)
else:
normalized = self.param_free_norm(x + noise, misalign_mask)
# Part 2. Produce affine parameters conditioned on the segmentation map.
actv = self.conv_shared(seg)
gamma = self.conv_gamma(actv)
beta = self.conv_beta(actv)
# Apply the affine parameters.
output = normalized * (1 + gamma) + beta
return output
class SPADEResBlock(nn.Module):
def __init__(self, opt, input_nc, output_nc, use_mask_norm=True):
super(SPADEResBlock, self).__init__()
self.param_opt=opt
self.learned_shortcut = (input_nc != output_nc)
middle_nc = min(input_nc, output_nc)
self.conv_0 = nn.Conv2d(input_nc, middle_nc, kernel_size=3, padding=1)
self.conv_1 = nn.Conv2d(middle_nc, output_nc, kernel_size=3, padding=1)
if self.learned_shortcut:
self.conv_s = nn.Conv2d(input_nc, output_nc, kernel_size=1, bias=False)
subnorm_type = opt.norm_G
if subnorm_type.startswith('spectral'):
subnorm_type = subnorm_type[len('spectral'):]
self.conv_0 = spectral_norm(self.conv_0)
self.conv_1 = spectral_norm(self.conv_1)
if self.learned_shortcut:
self.conv_s = spectral_norm(self.conv_s)
gen_semantic_nc = opt.gen_semantic_nc
if use_mask_norm:
subnorm_type = 'aliasmask'
gen_semantic_nc = gen_semantic_nc + 1
self.norm_0 = SPADENorm(opt,subnorm_type, input_nc, gen_semantic_nc)
self.norm_1 = SPADENorm(opt,subnorm_type, middle_nc, gen_semantic_nc)
if self.learned_shortcut:
self.norm_s = SPADENorm(opt,subnorm_type, input_nc, gen_semantic_nc)
self.relu = nn.LeakyReLU(0.2)
def shortcut(self, x, seg, misalign_mask):
if self.learned_shortcut:
return self.conv_s(self.norm_s(x, seg, misalign_mask))
else:
return x
def forward(self, x, seg, misalign_mask=None):
seg = F.interpolate(seg, size=x.size()[2:], mode='nearest')
if misalign_mask is not None:
misalign_mask = F.interpolate(misalign_mask, size=x.size()[2:], mode='nearest')
x_s = self.shortcut(x, seg, misalign_mask)
dx = self.conv_0(self.relu(self.norm_0(x, seg, misalign_mask)))
dx = self.conv_1(self.relu(self.norm_1(dx, seg, misalign_mask)))
output = x_s + dx
return output
class SPADEGenerator(BaseNetwork):
def __init__(self, opt, input_nc):
super(SPADEGenerator, self).__init__()
self.num_upsampling_layers = opt.num_upsampling_layers
self.param_opt=opt
self.sh, self.sw = self.compute_latent_vector_size(opt)
nf = opt.ngf
self.conv_0 = nn.Conv2d(input_nc, nf * 16, kernel_size=3, padding=1)
for i in range(1, 8):
self.add_module('conv_{}'.format(i), nn.Conv2d(input_nc, 16, kernel_size=3, padding=1))
self.head_0 = SPADEResBlock(opt, nf * 16, nf * 16, use_mask_norm=False)
self.G_middle_0 = SPADEResBlock(opt, nf * 16 + 16, nf * 16, use_mask_norm=False)
self.G_middle_1 = SPADEResBlock(opt, nf * 16 + 16, nf * 16, use_mask_norm=False)
self.up_0 = SPADEResBlock(opt, nf * 16 + 16, nf * 8, use_mask_norm=False)
self.up_1 = SPADEResBlock(opt, nf * 8 + 16, nf * 4, use_mask_norm=False)
self.up_2 = SPADEResBlock(opt, nf * 4 + 16, nf * 2, use_mask_norm=False)
self.up_3 = SPADEResBlock(opt, nf * 2 + 16, nf * 1, use_mask_norm=False)
if self.num_upsampling_layers == 'most':
self.up_4 = SPADEResBlock(opt, nf * 1 + 16, nf // 2, use_mask_norm=False)
nf = nf // 2
self.conv_img = nn.Conv2d(nf, 3, kernel_size=3, padding=1)
self.up = nn.Upsample(scale_factor=2, mode='nearest')
self.relu = nn.LeakyReLU(0.2)
self.tanh = nn.Tanh()
def compute_latent_vector_size(self, opt):
if self.num_upsampling_layers == 'normal':
num_up_layers = 5
elif self.num_upsampling_layers == 'more':
num_up_layers = 6
elif self.num_upsampling_layers == 'most':
num_up_layers = 7
else:
raise ValueError("opt.num_upsampling_layers '{}' is not recognized".format(self.num_upsampling_layers))
sh = opt.fine_height // 2**num_up_layers
sw = opt.fine_width // 2**num_up_layers
return sh, sw
def forward(self, x, seg):
samples = [F.interpolate(x, size=(self.sh * 2**i, self.sw * 2**i), mode='nearest') for i in range(8)]
features = [self._modules['conv_{}'.format(i)](samples[i]) for i in range(8)]
x = self.head_0(features[0], seg)
x = self.up(x)
x = self.G_middle_0(torch.cat((x, features[1]), 1), seg)
if self.num_upsampling_layers in ['more', 'most']:
x = self.up(x)
x = self.G_middle_1(torch.cat((x, features[2]), 1), seg)
x = self.up(x)
x = self.up_0(torch.cat((x, features[3]), 1), seg)
x = self.up(x)
x = self.up_1(torch.cat((x, features[4]), 1), seg)
x = self.up(x)
x = self.up_2(torch.cat((x, features[5]), 1), seg)
x = self.up(x)
x = self.up_3(torch.cat((x, features[6]), 1), seg)
if self.num_upsampling_layers == 'most':
x = self.up(x)
x = self.up_4(torch.cat((x, features[7]), 1), seg)
x = self.conv_img(self.relu(x))
return self.tanh(x)
########################################################################
########################################################################
class NLayerDiscriminator(BaseNetwork):
def __init__(self, opt):
super().__init__()
self.no_ganFeat_loss = opt.no_ganFeat_loss
nf = opt.ndf
kw = 4
pw = int(np.ceil((kw - 1.0) / 2))
norm_layer = get_nonspade_norm_layer(opt.norm_D)
input_nc = opt.gen_semantic_nc + 3
# input_nc = opt.gen_semantic_nc + 13
sequence = [[nn.Conv2d(input_nc, nf, kernel_size=kw, stride=2, padding=pw),
nn.LeakyReLU(0.2, False)]]
for n in range(1, opt.n_layers_D):
nf_prev = nf
nf = min(nf * 2, 512)
sequence += [[norm_layer(nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=pw)),
nn.LeakyReLU(0.2, False)]]
sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=pw)]]
# We divide the layers into groups to extract intermediate layer outputs
for n in range(len(sequence)):
self.add_module('model' + str(n), nn.Sequential(*sequence[n]))
def forward(self, input):
results = [input]
for submodel in self.children():
intermediate_output = submodel(results[-1])
results.append(intermediate_output)
get_intermediate_features = not self.no_ganFeat_loss
if get_intermediate_features:
return results[1:]
else:
return results[-1]
class MultiscaleDiscriminator(BaseNetwork):
def __init__(self, opt):
super().__init__()
self.no_ganFeat_loss = opt.no_ganFeat_loss
for i in range(opt.num_D):
subnetD = NLayerDiscriminator(opt)
self.add_module('discriminator_%d' % i, subnetD)
def downsample(self, input):
return F.avg_pool2d(input, kernel_size=3, stride=2, padding=[1, 1], count_include_pad=False)
# Returns list of lists of discriminator outputs.
# The final result is of size opt.num_D x opt.n_layers_D
def forward(self, input):
result = []
get_intermediate_features = not self.no_ganFeat_loss
for name, D in self.named_children():
out = D(input)
if not get_intermediate_features:
out = [out]
result.append(out)
input = self.downsample(input)
return result
class GANLoss(nn.Module):
def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0, tensor=torch.FloatTensor):
super(GANLoss, self).__init__()
self.real_label = target_real_label
self.fake_label = target_fake_label
self.real_label_tensor = None
self.fake_label_tensor = None
self.zero_tensor = None
self.Tensor = tensor
self.gan_mode = gan_mode
if gan_mode == 'ls':
pass
elif gan_mode == 'original':
pass
elif gan_mode == 'w':
pass
elif gan_mode == 'hinge':
pass
else:
raise ValueError('Unexpected gan_mode {}'.format(gan_mode))
def get_target_tensor(self, input, target_is_real):
if target_is_real:
if self.real_label_tensor is None:
self.real_label_tensor = self.Tensor(1).fill_(self.real_label)
self.real_label_tensor.requires_grad_(False)
return self.real_label_tensor.expand_as(input)
else:
if self.fake_label_tensor is None:
self.fake_label_tensor = self.Tensor(1).fill_(self.fake_label)
self.fake_label_tensor.requires_grad_(False)
return self.fake_label_tensor.expand_as(input)
def get_zero_tensor(self, input):
if self.zero_tensor is None:
self.zero_tensor = self.Tensor(1).fill_(0)
self.zero_tensor.requires_grad_(False)
return self.zero_tensor.expand_as(input)
def loss(self, input, target_is_real, for_discriminator=True):
if self.gan_mode == 'original': # cross entropy loss
target_tensor = self.get_target_tensor(input, target_is_real)
loss = F.binary_cross_entropy_with_logits(input, target_tensor)
return loss
elif self.gan_mode == 'ls':
target_tensor = self.get_target_tensor(input, target_is_real)
return F.mse_loss(input, target_tensor)
elif self.gan_mode == 'hinge':
if for_discriminator:
if target_is_real:
minval = torch.min(input - 1, self.get_zero_tensor(input))
loss = -torch.mean(minval)
else:
minval = torch.min(-input - 1, self.get_zero_tensor(input))
loss = -torch.mean(minval)
else:
assert target_is_real, "The generator's hinge loss must be aiming for real"
loss = -torch.mean(input)
return loss
else:
# wgan
if target_is_real:
return -input.mean()
else:
return input.mean()
def __call__(self, input, target_is_real, for_discriminator=True):
# computing loss is a bit complicated because |input| may not be
# a tensor, but list of tensors in case of multiscale discriminator
if isinstance(input, list):
loss = 0
for pred_i in input:
if isinstance(pred_i, list):
pred_i = pred_i[-1]
loss_tensor = self.loss(pred_i, target_is_real, for_discriminator)
bs = 1 if len(loss_tensor.size()) == 0 else loss_tensor.size(0)
new_loss = torch.mean(loss_tensor.view(bs, -1), dim=1)
loss += new_loss
return loss / len(input)
else:
return self.loss(input, target_is_real, for_discriminator)
def get_nonspade_norm_layer(norm_type='instance'):
def get_out_channel(layer):
if hasattr(layer, 'out_channels'):
return getattr(layer, 'out_channels')
return layer.weight.size(0)
def add_norm_layer(layer):
nonlocal norm_type
if norm_type.startswith('spectral'):
layer = spectral_norm(layer)
subnorm_type = norm_type[len('spectral'):]
if subnorm_type == 'none' or len(subnorm_type) == 0:
return layer
# remove bias in the previous layer, which is meaningless
# since it has no effect after normalization
if getattr(layer, 'bias', None) is not None:
delattr(layer, 'bias')
layer.register_parameter('bias', None)
if subnorm_type == 'batch':
norm_layer = nn.BatchNorm2d(get_out_channel(layer), affine=True)
# elif subnorm_type == 'sync_batch':
# norm_layer = SynchronizedBatchNorm2d(get_out_channel(layer), affine=True)
elif subnorm_type == 'instance':
norm_layer = nn.InstanceNorm2d(get_out_channel(layer), affine=False)
else:
raise ValueError('normalization layer %s is not recognized' % subnorm_type)
return nn.Sequential(layer, norm_layer)
return add_norm_layer
|