Spaces:
Running
Running
File size: 19,182 Bytes
f774f0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torchvision import models
import os
from torch.nn.utils import spectral_norm
import numpy as np
import functools
class ConditionGenerator(nn.Module):
def __init__(self, opt, input1_nc, input2_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d):
super(ConditionGenerator, self).__init__()
self.warp_feature = opt.warp_feature
self.out_layer_opt = opt.out_layer
self.ClothEncoder = nn.Sequential(
ResBlock(input1_nc, ngf, norm_layer=norm_layer, scale='down'), # 128
ResBlock(ngf, ngf * 2, norm_layer=norm_layer, scale='down'), # 64
ResBlock(ngf * 2, ngf * 4, norm_layer=norm_layer, scale='down'), # 32
ResBlock(ngf * 4, ngf * 4, norm_layer=norm_layer, scale='down'), # 16
ResBlock(ngf * 4, ngf * 4, norm_layer=norm_layer, scale='down') # 8
)
self.PoseEncoder = nn.Sequential(
ResBlock(input2_nc, ngf, norm_layer=norm_layer, scale='down'),
ResBlock(ngf, ngf * 2, norm_layer=norm_layer, scale='down'),
ResBlock(ngf * 2, ngf * 4, norm_layer=norm_layer, scale='down'),
ResBlock(ngf * 4, ngf * 4, norm_layer=norm_layer, scale='down'),
ResBlock(ngf * 4, ngf * 4, norm_layer=norm_layer, scale='down')
)
self.conv = ResBlock(ngf * 4, ngf * 8, norm_layer=norm_layer, scale='same')
if opt.warp_feature == 'T1':
# in_nc -> skip connection + T1, T2 channel
self.SegDecoder = nn.Sequential(
ResBlock(ngf * 8, ngf * 4, norm_layer=norm_layer, scale='up'), # 16
ResBlock(ngf * 4 * 2 + ngf * 4 , ngf * 4, norm_layer=norm_layer, scale='up'), # 32
ResBlock(ngf * 4 * 2 + ngf * 4 , ngf * 2, norm_layer=norm_layer, scale='up'), # 64
ResBlock(ngf * 2 * 2 + ngf * 4 , ngf, norm_layer=norm_layer, scale='up'), # 128
ResBlock(ngf * 1 * 2 + ngf * 4, ngf, norm_layer=norm_layer, scale='up') # 256
)
if opt.warp_feature == 'encoder':
# in_nc -> [x, skip_connection, warped_cloth_encoder_feature(E1)]
self.SegDecoder = nn.Sequential(
ResBlock(ngf * 8, ngf * 4, norm_layer=norm_layer, scale='up'), # 16
ResBlock(ngf * 4 * 3, ngf * 4, norm_layer=norm_layer, scale='up'), # 32
ResBlock(ngf * 4 * 3, ngf * 2, norm_layer=norm_layer, scale='up'), # 64
ResBlock(ngf * 2 * 3, ngf, norm_layer=norm_layer, scale='up'), # 128
ResBlock(ngf * 1 * 3, ngf, norm_layer=norm_layer, scale='up') # 256
)
if opt.out_layer == 'relu':
self.out_layer = ResBlock(ngf + input1_nc + input2_nc, output_nc, norm_layer=norm_layer, scale='same')
if opt.out_layer == 'conv':
self.out_layer = nn.Sequential(
ResBlock(ngf + input1_nc + input2_nc, ngf, norm_layer=norm_layer, scale='same'),
nn.Conv2d(ngf, output_nc, kernel_size=1, bias=True)
)
# Cloth Conv 1x1
self.conv1 = nn.Sequential(
nn.Conv2d(ngf, ngf * 4, kernel_size=1, bias=True),
nn.Conv2d(ngf * 2, ngf * 4, kernel_size=1, bias=True),
nn.Conv2d(ngf * 4, ngf * 4, kernel_size=1, bias=True),
nn.Conv2d(ngf * 4, ngf * 4, kernel_size=1, bias=True),
)
# Person Conv 1x1
self.conv2 = nn.Sequential(
nn.Conv2d(ngf, ngf * 4, kernel_size=1, bias=True),
nn.Conv2d(ngf * 2, ngf * 4, kernel_size=1, bias=True),
nn.Conv2d(ngf * 4, ngf * 4, kernel_size=1, bias=True),
nn.Conv2d(ngf * 4, ngf * 4, kernel_size=1, bias=True),
)
self.flow_conv = nn.ModuleList([
nn.Conv2d(ngf * 8, 2, kernel_size=3, stride=1, padding=1, bias=True),
nn.Conv2d(ngf * 8, 2, kernel_size=3, stride=1, padding=1, bias=True),
nn.Conv2d(ngf * 8, 2, kernel_size=3, stride=1, padding=1, bias=True),
nn.Conv2d(ngf * 8, 2, kernel_size=3, stride=1, padding=1, bias=True),
nn.Conv2d(ngf * 8, 2, kernel_size=3, stride=1, padding=1, bias=True),
]
)
self.bottleneck = nn.Sequential(
nn.Sequential(nn.Conv2d(ngf * 4, ngf * 4, kernel_size=3, stride=1, padding=1, bias=True), nn.ReLU()),
nn.Sequential(nn.Conv2d(ngf * 4, ngf * 4, kernel_size=3, stride=1, padding=1, bias=True), nn.ReLU()),
nn.Sequential(nn.Conv2d(ngf * 2, ngf * 4, kernel_size=3, stride=1, padding=1, bias=True) , nn.ReLU()),
nn.Sequential(nn.Conv2d(ngf, ngf * 4, kernel_size=3, stride=1, padding=1, bias=True), nn.ReLU()),
)
def normalize(self, x):
return x
def forward(self,opt,input1, input2, upsample='bilinear'):
E1_list = []
E2_list = []
flow_list = []
# warped_grid_list = []
# Feature Pyramid Network
for i in range(5):
if i == 0:
E1_list.append(self.ClothEncoder[i](input1))
E2_list.append(self.PoseEncoder[i](input2))
else:
E1_list.append(self.ClothEncoder[i](E1_list[i - 1]))
E2_list.append(self.PoseEncoder[i](E2_list[i - 1]))
# Compute Clothflow
for i in range(5):
N, _, iH, iW = E1_list[4 - i].size()
grid = make_grid(N, iH, iW,opt)
if i == 0:
T1 = E1_list[4 - i] # (ngf * 4) x 8 x 6
T2 = E2_list[4 - i]
E4 = torch.cat([T1, T2], 1)
flow = self.flow_conv[i](self.normalize(E4)).permute(0, 2, 3, 1)
flow_list.append(flow)
x = self.conv(T2)
x = self.SegDecoder[i](x)
else:
T1 = F.interpolate(T1, scale_factor=2, mode=upsample) + self.conv1[4 - i](E1_list[4 - i])
T2 = F.interpolate(T2, scale_factor=2, mode=upsample) + self.conv2[4 - i](E2_list[4 - i])
flow = F.interpolate(flow_list[i - 1].permute(0, 3, 1, 2), scale_factor=2, mode=upsample).permute(0, 2, 3, 1) # upsample n-1 flow
flow_norm = torch.cat([flow[:, :, :, 0:1] / ((iW/2 - 1.0) / 2.0), flow[:, :, :, 1:2] / ((iH/2 - 1.0) / 2.0)], 3)
warped_T1 = F.grid_sample(T1, flow_norm + grid, padding_mode='border')
flow = flow + self.flow_conv[i](self.normalize(torch.cat([warped_T1, self.bottleneck[i-1](x)], 1))).permute(0, 2, 3, 1) # F(n)
flow_list.append(flow)
if self.warp_feature == 'T1':
x = self.SegDecoder[i](torch.cat([x, E2_list[4-i], warped_T1], 1))
if self.warp_feature == 'encoder':
warped_E1 = F.grid_sample(E1_list[4-i], flow_norm + grid, padding_mode='border')
x = self.SegDecoder[i](torch.cat([x, E2_list[4-i], warped_E1], 1))
N, _, iH, iW = input1.size()
grid = make_grid(N, iH, iW,opt)
flow = F.interpolate(flow_list[-1].permute(0, 3, 1, 2), scale_factor=2, mode=upsample).permute(0, 2, 3, 1)
flow_norm = torch.cat([flow[:, :, :, 0:1] / ((iW/2 - 1.0) / 2.0), flow[:, :, :, 1:2] / ((iH/2 - 1.0) / 2.0)], 3)
warped_input1 = F.grid_sample(input1, flow_norm + grid, padding_mode='border')
x = self.out_layer(torch.cat([x, input2, warped_input1], 1))
warped_c = warped_input1[:, :-1, :, :]
warped_cm = warped_input1[:, -1:, :, :]
return flow_list, x, warped_c, warped_cm
def make_grid(N, iH, iW,opt):
grid_x = torch.linspace(-1.0, 1.0, iW).view(1, 1, iW, 1).expand(N, iH, -1, -1)
grid_y = torch.linspace(-1.0, 1.0, iH).view(1, iH, 1, 1).expand(N, -1, iW, -1)
if opt.cuda :
grid = torch.cat([grid_x, grid_y], 3).cuda()
else:
grid = torch.cat([grid_x, grid_y], 3)
return grid
class ResBlock(nn.Module):
def __init__(self, in_nc, out_nc, scale='down', norm_layer=nn.BatchNorm2d):
super(ResBlock, self).__init__()
use_bias = norm_layer == nn.InstanceNorm2d
assert scale in ['up', 'down', 'same'], "ResBlock scale must be in 'up' 'down' 'same'"
if scale == 'same':
self.scale = nn.Conv2d(in_nc, out_nc, kernel_size=1, bias=True)
if scale == 'up':
self.scale = nn.Sequential(
nn.Upsample(scale_factor=2, mode='bilinear'),
nn.Conv2d(in_nc, out_nc, kernel_size=1,bias=True)
)
if scale == 'down':
self.scale = nn.Conv2d(in_nc, out_nc, kernel_size=3, stride=2, padding=1, bias=use_bias)
self.block = nn.Sequential(
nn.Conv2d(out_nc, out_nc, kernel_size=3, stride=1, padding=1, bias=use_bias),
norm_layer(out_nc),
nn.ReLU(inplace=True),
nn.Conv2d(out_nc, out_nc, kernel_size=3, stride=1, padding=1, bias=use_bias),
norm_layer(out_nc)
)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
residual = self.scale(x)
return self.relu(residual + self.block(residual))
class Vgg19(nn.Module):
def __init__(self, requires_grad=False):
super(Vgg19, self).__init__()
vgg_pretrained_features = models.vgg19(pretrained=True).features
self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
self.slice4 = torch.nn.Sequential()
self.slice5 = torch.nn.Sequential()
for x in range(2):
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(2, 7):
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(7, 12):
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(12, 21):
self.slice4.add_module(str(x), vgg_pretrained_features[x])
for x in range(21, 30):
self.slice5.add_module(str(x), vgg_pretrained_features[x])
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def forward(self, X):
h_relu1 = self.slice1(X)
h_relu2 = self.slice2(h_relu1)
h_relu3 = self.slice3(h_relu2)
h_relu4 = self.slice4(h_relu3)
h_relu5 = self.slice5(h_relu4)
out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5]
return out
class VGGLoss(nn.Module):
def __init__(self, opt,layids = None):
super(VGGLoss, self).__init__()
self.vgg = Vgg19()
if opt.cuda:
self.vgg.cuda()
self.criterion = nn.L1Loss()
self.weights = [1.0/32, 1.0/16, 1.0/8, 1.0/4, 1.0]
self.layids = layids
def forward(self, x, y):
x_vgg, y_vgg = self.vgg(x), self.vgg(y)
loss = 0
if self.layids is None:
self.layids = list(range(len(x_vgg)))
for i in self.layids:
loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach())
return loss
# Defines the GAN loss which uses either LSGAN or the regular GAN.
# When LSGAN is used, it is basically same as MSELoss,
# but it abstracts away the need to create the target label tensor
# that has the same size as the input
class GANLoss(nn.Module):
def __init__(self, use_lsgan=True, target_real_label=1.0, target_fake_label=0.0,
tensor=torch.FloatTensor):
super(GANLoss, self).__init__()
self.real_label = target_real_label
self.fake_label = target_fake_label
self.real_label_var = None
self.fake_label_var = None
self.Tensor = tensor
if use_lsgan:
self.loss = nn.MSELoss()
else:
self.loss = nn.BCELoss()
def get_target_tensor(self, input, target_is_real):
if target_is_real:
create_label = ((self.real_label_var is None) or
(self.real_label_var.numel() != input.numel()))
if create_label:
real_tensor = self.Tensor(input.size()).fill_(self.real_label)
self.real_label_var = Variable(real_tensor, requires_grad=False)
target_tensor = self.real_label_var
else:
create_label = ((self.fake_label_var is None) or
(self.fake_label_var.numel() != input.numel()))
if create_label:
fake_tensor = self.Tensor(input.size()).fill_(self.fake_label)
self.fake_label_var = Variable(fake_tensor, requires_grad=False)
target_tensor = self.fake_label_var
return target_tensor
def __call__(self, input, target_is_real):
if isinstance(input[0], list):
loss = 0
for input_i in input:
pred = input_i[-1]
target_tensor = self.get_target_tensor(pred, target_is_real)
loss += self.loss(pred, target_tensor)
return loss
else:
target_tensor = self.get_target_tensor(input[-1], target_is_real)
return self.loss(input[-1], target_tensor)
class MultiscaleDiscriminator(nn.Module):
def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d,
use_sigmoid=False, num_D=3, getIntermFeat=False, Ddownx2=False, Ddropout=False, spectral=False):
super(MultiscaleDiscriminator, self).__init__()
self.num_D = num_D
self.n_layers = n_layers
self.getIntermFeat = getIntermFeat
self.Ddownx2 = Ddownx2
for i in range(num_D):
netD = NLayerDiscriminator(input_nc, ndf, n_layers, norm_layer, use_sigmoid, getIntermFeat, Ddropout, spectral=spectral)
if getIntermFeat:
for j in range(n_layers + 2):
setattr(self, 'scale' + str(i) + '_layer' + str(j), getattr(netD, 'model' + str(j)))
else:
setattr(self, 'layer' + str(i), netD.model)
self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False)
def singleD_forward(self, model, input):
if self.getIntermFeat:
result = [input]
for i in range(len(model)):
result.append(model[i](result[-1]))
return result[1:]
else:
return [model(input)]
def forward(self, input):
num_D = self.num_D
result = []
if self.Ddownx2:
input_downsampled = self.downsample(input)
else:
input_downsampled = input
for i in range(num_D):
if self.getIntermFeat:
model = [getattr(self, 'scale' + str(num_D - 1 - i) + '_layer' + str(j)) for j in
range(self.n_layers + 2)]
else:
model = getattr(self, 'layer' + str(num_D - 1 - i))
result.append(self.singleD_forward(model, input_downsampled))
if i != (num_D - 1):
input_downsampled = self.downsample(input_downsampled)
return result
class NLayerDiscriminator(nn.Module):
def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, getIntermFeat=False, Ddropout=False, spectral=False):
super(NLayerDiscriminator, self).__init__()
self.getIntermFeat = getIntermFeat
self.n_layers = n_layers
self.spectral_norm = spectral_norm if spectral else lambda x: x
kw = 4
padw = int(np.ceil((kw - 1.0) / 2))
sequence = [[nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]]
nf = ndf
for n in range(1, n_layers):
nf_prev = nf
nf = min(nf * 2, 512)
if Ddropout:
sequence += [[
self.spectral_norm(nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw)),
norm_layer(nf), nn.LeakyReLU(0.2, True), nn.Dropout(0.5)
]]
else:
sequence += [[
self.spectral_norm(nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw)),
norm_layer(nf), nn.LeakyReLU(0.2, True)
]]
nf_prev = nf
nf = min(nf * 2, 512)
sequence += [[
nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw),
norm_layer(nf),
nn.LeakyReLU(0.2, True)
]]
sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]]
if use_sigmoid:
sequence += [[nn.Sigmoid()]]
if getIntermFeat:
for n in range(len(sequence)):
setattr(self, 'model' + str(n), nn.Sequential(*sequence[n]))
else:
sequence_stream = []
for n in range(len(sequence)):
sequence_stream += sequence[n]
self.model = nn.Sequential(*sequence_stream)
def forward(self, input):
if self.getIntermFeat:
res = [input]
for n in range(self.n_layers + 2):
model = getattr(self, 'model' + str(n))
res.append(model(res[-1]))
return res[1:]
else:
return self.model(input)
def save_checkpoint(model, save_path,opt):
if not os.path.exists(os.path.dirname(save_path)):
os.makedirs(os.path.dirname(save_path))
torch.save(model.cpu().state_dict(), save_path)
if opt.cuda :
model.cuda()
def load_checkpoint(model, checkpoint_path,opt):
if not os.path.exists(checkpoint_path):
print('no checkpoint')
raise
log = model.load_state_dict(torch.load(checkpoint_path), strict=False)
if opt.cuda :
model.cuda()
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv2d') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm2d') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
def get_norm_layer(norm_type='instance'):
if norm_type == 'batch':
norm_layer = functools.partial(nn.BatchNorm2d, affine=True)
elif norm_type == 'instance':
norm_layer = functools.partial(nn.InstanceNorm2d, affine=False)
else:
raise NotImplementedError('normalization layer [%s] is not found' % norm_type)
return norm_layer
def define_D(input_nc, ndf=64, n_layers_D=3, norm='instance', use_sigmoid=False, num_D=2, getIntermFeat=False, gpu_ids=[], Ddownx2=False, Ddropout=False, spectral=False):
norm_layer = get_norm_layer(norm_type=norm)
netD = MultiscaleDiscriminator(input_nc, ndf, n_layers_D, norm_layer, use_sigmoid, num_D, getIntermFeat, Ddownx2, Ddropout, spectral=spectral)
print(netD)
if len(gpu_ids) > 0:
assert (torch.cuda.is_available())
netD.cuda()
netD.apply(weights_init)
return netD
|